Dual-Modal Colorimetric and Surface-Enhanced Raman Scattering (SERS)-Based Lateral Flow Immunoassay for Ultrasensitive Detection of SARS-CoV-2 Using a Plasmonic Gold Nanocrown.
The 2019 coronavirus disease (COVID-19) outbreak created an unprecedented need for rapid, sensitive, and cost-effective point-of-care diagnostic tests to prevent and mitigate the spread of the SARS-CoV-2 virus. Herein, we demonstrated an advanced lateral flow immunoassay (LFIA) platform with dual-functional [colorimetric and surface-enhanced Raman scattering (SERS)] detection of the spike 1 (S1) protein of SARS-CoV-2. The nanosensor was integrated with a specially designed core-gap-shell morphology consisting of a gold shell decorated with external nanospheres, a structure referred to as gold nanocrown (GNC), labeled with a Raman reporter molecule 1,3,3,1',3',3'-hexamethyl-2,2'-indotricarbocyanine iodide (HITC) to produce a strong colorimetric signal as well as an enhanced SERS signal. Among the different plasmonics-active GNC nanostructures, the GNC-2 morphology, which has a shell decorated with an optimum number and size of nanospheres, produces an intense dark-blue colorimetric signal and ultrahigh SERS signal. The limit of detection (LOD) of the S1 protein via colorimetric detection LFIA was determined to be 91.24 pg/mL. On the other hand, the LOD for the SERS LFIA method was more than three orders of magnitude lower at 57.21 fg/mL. Furthermore, we analyzed the performance of the GNC-2 nanosensor for directly analyzing the S1 protein spiked in saliva samples without any sample pretreatment and achieving the LOD as low as 39.65 fg/mL using SERS-based plasmonics-enhanced LFIA, indicating ultrahigh detection sensitivity. Overall, our GNC nanosensor showed excellent sensitivity, reproducibility, and rapid detection of the SARS-CoV-2 S1 protein, demonstrating excellent potential as a promising point-of-care platform for the early detection of respiratory virus infections.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Spectrum Analysis, Raman
- SARS-CoV-2
- Reproducibility of Results
- Metal Nanoparticles
- Immunoassay
- Humans
- Gold
- Colorimetry
- COVID-19
- Analytical Chemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Spectrum Analysis, Raman
- SARS-CoV-2
- Reproducibility of Results
- Metal Nanoparticles
- Immunoassay
- Humans
- Gold
- Colorimetry
- COVID-19
- Analytical Chemistry