An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals
Publication
, Journal Article
Ruotolo, J; Wang, K; Wei, F
Published in: Electronic Journal of Combinatorics
January 1, 2024
Let G be a multipartite graph with partition V
Duke Scholars
Published In
Electronic Journal of Combinatorics
DOI
EISSN
1077-8926
Publication Date
January 1, 2024
Volume
31
Issue
1
Related Subject Headings
- Computation Theory & Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 0802 Computation Theory and Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Ruotolo, J., Wang, K., & Wei, F. (2024). An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals. Electronic Journal of Combinatorics, 31(1). https://doi.org/10.37236/11670
Ruotolo, J., K. Wang, and F. Wei. “An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals.” Electronic Journal of Combinatorics 31, no. 1 (January 1, 2024). https://doi.org/10.37236/11670.
Ruotolo J, Wang K, Wei F. An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals. Electronic Journal of Combinatorics. 2024 Jan 1;31(1).
Ruotolo, J., et al. “An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals.” Electronic Journal of Combinatorics, vol. 31, no. 1, Jan. 2024. Scopus, doi:10.37236/11670.
Ruotolo J, Wang K, Wei F. An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals. Electronic Journal of Combinatorics. 2024 Jan 1;31(1).
Published In
Electronic Journal of Combinatorics
DOI
EISSN
1077-8926
Publication Date
January 1, 2024
Volume
31
Issue
1
Related Subject Headings
- Computation Theory & Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 0802 Computation Theory and Mathematics
- 0101 Pure Mathematics