Skip to main content

An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals

Publication ,  Journal Article
Ruotolo, J; Wang, K; Wei, F
Published in: Electronic Journal of Combinatorics
January 1, 2024

Let G be a multipartite graph with partition V1, V2, …, Vk of V (G). Let di,j denote the edge density of the pair (Vi, Vj). An independent transversal is an independent set of G with exactly one vertex in each Vi . In this paper, we prove an asymptotically sharp upper bound on the maximum number of independent transversals given the di,j ’s.

Duke Scholars

Published In

Electronic Journal of Combinatorics

DOI

EISSN

1077-8926

Publication Date

January 1, 2024

Volume

31

Issue

1

Related Subject Headings

  • Computation Theory & Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 4613 Theory of computation
  • 0802 Computation Theory and Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Ruotolo, J., Wang, K., & Wei, F. (2024). An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals. Electronic Journal of Combinatorics, 31(1). https://doi.org/10.37236/11670
Ruotolo, J., K. Wang, and F. Wei. “An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals.” Electronic Journal of Combinatorics 31, no. 1 (January 1, 2024). https://doi.org/10.37236/11670.
Ruotolo J, Wang K, Wei F. An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals. Electronic Journal of Combinatorics. 2024 Jan 1;31(1).
Ruotolo, J., et al. “An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals.” Electronic Journal of Combinatorics, vol. 31, no. 1, Jan. 2024. Scopus, doi:10.37236/11670.
Ruotolo J, Wang K, Wei F. An Asymptotically Sharp Bound on the Maximum Number of Independent Transversals. Electronic Journal of Combinatorics. 2024 Jan 1;31(1).

Published In

Electronic Journal of Combinatorics

DOI

EISSN

1077-8926

Publication Date

January 1, 2024

Volume

31

Issue

1

Related Subject Headings

  • Computation Theory & Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 4613 Theory of computation
  • 0802 Computation Theory and Mathematics
  • 0101 Pure Mathematics