Skip to main content

A surgery formula for knot Floer homology

Publication ,  Journal Article
Hedden, M; Levine, AS
Published in: Quantum Topology
January 1, 2024

Let K be a rationally null-homologous knot in a 3-manifold Y, equipped with a non-zero framing λ, and let Yλ(K) denote the result of λ-framed surgery on Y. Ozsváth and Szabó gave a formula for the Heegaard Floer homology groups of Yλ (K) in terms of the knot Floer complex of (Y, K). We strengthen this formula by adding a second filtration that computes the knot Floer complex of the dual knot Kλ in Yλ, i.e., the core circle of the surgery solid torus. In the course of proving our refinement we derive a combinatorial formula for the Alexander grading which may be of independent interest.

Duke Scholars

Published In

Quantum Topology

DOI

EISSN

1664-073X

ISSN

1663-487X

Publication Date

January 1, 2024

Volume

15

Issue

2

Start / End Page

229 / 336

Related Subject Headings

  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0105 Mathematical Physics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hedden, M., & Levine, A. S. (2024). A surgery formula for knot Floer homology. Quantum Topology, 15(2), 229–336. https://doi.org/10.4171/qt/188
Hedden, M., and A. S. Levine. “A surgery formula for knot Floer homology.” Quantum Topology 15, no. 2 (January 1, 2024): 229–336. https://doi.org/10.4171/qt/188.
Hedden M, Levine AS. A surgery formula for knot Floer homology. Quantum Topology. 2024 Jan 1;15(2):229–336.
Hedden, M., and A. S. Levine. “A surgery formula for knot Floer homology.” Quantum Topology, vol. 15, no. 2, Jan. 2024, pp. 229–336. Scopus, doi:10.4171/qt/188.
Hedden M, Levine AS. A surgery formula for knot Floer homology. Quantum Topology. 2024 Jan 1;15(2):229–336.

Published In

Quantum Topology

DOI

EISSN

1664-073X

ISSN

1663-487X

Publication Date

January 1, 2024

Volume

15

Issue

2

Start / End Page

229 / 336

Related Subject Headings

  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0105 Mathematical Physics
  • 0101 Pure Mathematics