Skip to main content
Journal cover image

Hankel determinants and Jacobi continued fractions for q-Euler numbers

Publication ,  Journal Article
Chern, S; Jiu, L
Published in: Comptes Rendus Mathematique
January 1, 2024

The q-analogs of Bernoulli and Euler numbers were introduced by Carlitz in 1948. Similar to recent results on the Hankel determinants for the q-Bernoulli numbers established by Chapoton and Zeng, we perform a parallel analysis for the q-Euler numbers. It is shown that the associated orthogonal polynomials for q-Euler numbers are given by a specialization of the big q-Jacobi polynomials, thereby leading to their corresponding Jacobi continued fraction expressions, which eventually serve as a key to our determinant evaluations.

Duke Scholars

Published In

Comptes Rendus Mathematique

DOI

EISSN

1778-3569

ISSN

1631-073X

Publication Date

January 1, 2024

Volume

362

Start / End Page

203 / 216

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chern, S., & Jiu, L. (2024). Hankel determinants and Jacobi continued fractions for q-Euler numbers. Comptes Rendus Mathematique, 362, 203–216. https://doi.org/10.5802/crmath.569
Chern, S., and L. Jiu. “Hankel determinants and Jacobi continued fractions for q-Euler numbers.” Comptes Rendus Mathematique 362 (January 1, 2024): 203–16. https://doi.org/10.5802/crmath.569.
Chern S, Jiu L. Hankel determinants and Jacobi continued fractions for q-Euler numbers. Comptes Rendus Mathematique. 2024 Jan 1;362:203–16.
Chern, S., and L. Jiu. “Hankel determinants and Jacobi continued fractions for q-Euler numbers.” Comptes Rendus Mathematique, vol. 362, Jan. 2024, pp. 203–16. Scopus, doi:10.5802/crmath.569.
Chern S, Jiu L. Hankel determinants and Jacobi continued fractions for q-Euler numbers. Comptes Rendus Mathematique. 2024 Jan 1;362:203–216.
Journal cover image

Published In

Comptes Rendus Mathematique

DOI

EISSN

1778-3569

ISSN

1631-073X

Publication Date

January 1, 2024

Volume

362

Start / End Page

203 / 216

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics