K*(892)± resonance production in Pb-Pb collisions at sNN =5.02 TeV
The production of K∗(892)± meson resonance is measured at midrapidity (|y|<0.5) in Pb-Pb collisions at sNN=5.02 TeV using the ALICE detector at the CERN Large Hadron Collider. The resonance is reconstructed via its hadronic decay channel K∗(892)±→KS0π±. The transverse momentum distributions are obtained for various centrality intervals in the pT range of 0.4-16 GeV/c. Measurements of integrated yields, mean transverse momenta, and particle yield ratios are reported and found to be consistent with previous ALICE measurements for K∗(892)0 within uncertainties. The pT-integrated yield ratio 2K∗(892)±/(K++K-) in central Pb-Pb collisions shows a significant suppression at a level of 9.3σ relative to pp collisions. Thermal model calculations result in an overprediction of the particle yield ratio. Although both hadron resonance gas in partial chemical equilibrium (HRG-PCE) and music + smash simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas music + smash simulations tend to overpredict the particle yield ratio. These observations, along with the kinetic freeze-out temperatures extracted from the yields measured for light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which decreases with increasing collision centrality percentile. The pT-differential yield ratios 2K∗(892)±/(K++K-) and 2K∗(892)±/(π++π-) are presented and compared with measurements in pp collisions at s=5.02 TeV. Both particle ratios are found to be suppressed by up to a factor of five at pT<2.0 GeV/c in central Pb-Pb collisions and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor (RAA) shows a smooth evolution with centrality and is found to be below unity at pT>8 GeV/c, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5106 Nuclear and plasma physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5106 Nuclear and plasma physics