Selenium isotope paleobiogeochemistry
Publication
, Book
Stüeken, EE; Kipp, MA
October 8, 2020
The attraction of selenium isotopes as a paleoenvironmental tracer lies in the high redox potential of selenium oxyanions (SeIV and SeVI), the two dominant species in the modern ocean. The largest isotopic fractionations occur during oxyanion reduction, which makes selenium isotopes a sensitive proxy for the redox evolution of our planet. As a case study we review existing data from the Neoarchean and Paleoproterozoic, which show that significant isotopic fractionations are absent until 2.5 Ga, and prolonged isotopic deviations only appear around 2.3 Ga. Selenium isotopes have thus begun to reveal complex spatiotemporal redox patterns not reflected in other proxies.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Citation
APA
Chicago
ICMJE
MLA
NLM
Stüeken, E. E., & Kipp, M. A. (2020). Selenium isotope paleobiogeochemistry (pp. 1–24). https://doi.org/10.1017/9781108782203
Stüeken, E. E., and M. A. Kipp. Selenium isotope paleobiogeochemistry, 2020. https://doi.org/10.1017/9781108782203.
Stüeken EE, Kipp MA. Selenium isotope paleobiogeochemistry. 2020.
Stüeken, E. E., and M. A. Kipp. Selenium isotope paleobiogeochemistry. 2020, pp. 1–24. Scopus, doi:10.1017/9781108782203.
Stüeken EE, Kipp MA. Selenium isotope paleobiogeochemistry. 2020. p. 1–24.