Skip to main content

Deep Generative Models for Fast Photon Shower Simulation in ATLAS

Publication ,  Journal Article
Aad, G; Abbott, B; Abbott, DC; Abud, AA; Abeling, K; Abhayasinghe, DK; Abidi, SH; Aboulhorma, A; Abramowicz, H; Abreu, H; Abulaiti, Y; Adam, L ...
Published in: Computing and Software for Big Science
December 1, 2024

The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.

Duke Scholars

Published In

Computing and Software for Big Science

DOI

EISSN

2510-2044

Publication Date

December 1, 2024

Volume

8

Issue

1
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Aad, G., Abbott, B., Abbott, D. C., Abud, A. A., Abeling, K., Abhayasinghe, D. K., … Arce, A. T. H. (2024). Deep Generative Models for Fast Photon Shower Simulation in ATLAS. Computing and Software for Big Science, 8(1). https://doi.org/10.1007/s41781-023-00106-9
Aad, G., B. Abbott, D. C. Abbott, A. A. Abud, K. Abeling, D. K. Abhayasinghe, S. H. Abidi, et al. “Deep Generative Models for Fast Photon Shower Simulation in ATLAS.” Computing and Software for Big Science 8, no. 1 (December 1, 2024). https://doi.org/10.1007/s41781-023-00106-9.
Aad G, Abbott B, Abbott DC, Abud AA, Abeling K, Abhayasinghe DK, et al. Deep Generative Models for Fast Photon Shower Simulation in ATLAS. Computing and Software for Big Science. 2024 Dec 1;8(1).
Aad, G., et al. “Deep Generative Models for Fast Photon Shower Simulation in ATLAS.” Computing and Software for Big Science, vol. 8, no. 1, Dec. 2024. Scopus, doi:10.1007/s41781-023-00106-9.
Aad G, Abbott B, Abbott DC, Abud AA, Abeling K, Abhayasinghe DK, Abidi SH, Aboulhorma A, Abramowicz H, Abreu H, Abulaiti Y, Hoffman ACA, Acharya BS, Achkar B, Adam L, Bourdarios CA, Adamczyk L, Adamek L, Addepalli SV, Adelman J, Adiguzel A, Adorni S, Adye T, Affolder AA, Afik Y, Agaras MN, Agarwala J, Aggarwal A, Agheorghiesei C, Aguilar-Saavedra JA, Ahmad A, Ahmadov F, Ahmed WS, Ai X, Aielli G, Aizenberg I, Akbiyik M, Åkesson TPA, Akimov AV, Khoury KA, Alberghi GL, Albert J, Albicocco P, Verzini MJA, Alderweireldt S, Aleksa M, Aleksandrov IN, Alexa C, Alexopoulos T, Alfonsi A, Alfonsi F, Alhroob M, Ali B, Ali S, Aliev M, Alimonti G, Allaire C, Allbrooke BMM, Allport PP, Aloisio A, Alonso F, Alpigiani C, Camelia EA, Estevez MA, Alviggi MG, Coutinho YA, Ambler A, Ambroz L, Amelung C, Amidei D, Santos SPAD, Amoroso S, Amos KR, Amrouche CS, Ananiev V, Anastopoulos C, Andari N, Andeen T, Anders JK, Andrean SY, Andreazza A, Angelidakis S, Angerami A, Anisenkov AV, Annovi A, Antel C, Anthony MT, Antipov E, Antonelli M, Antrim DJA, Anulli F, Aoki M, Pozo JAA, Aparo MA, Bella LA, Appelt C, Aranzabal N, Ferraz VA, Arcangeletti C, Arce ATH. Deep Generative Models for Fast Photon Shower Simulation in ATLAS. Computing and Software for Big Science. 2024 Dec 1;8(1).

Published In

Computing and Software for Big Science

DOI

EISSN

2510-2044

Publication Date

December 1, 2024

Volume

8

Issue

1