Using Adiabatic Energy Splitting To Compute Dexter Energy Transfer Couplings.
Dexter energy transfer and transport (DET) are of broad interest in energy science, and DET rates depend on electronic couplings between donor and acceptor species. DET couplings are challenging to compute since they originate from both one- and two-particle interactions, and the strength of this interaction drops approximately exponentially with donor-acceptor distances. Using adiabatic energy splitting to compute DET couplings has advantages because adiabatic states can be calculated directly using conventional quantum chemical methods. We describe a minimum energy splitting method to compute the DET coupling by altering molecular geometries to drive the systems into a T1/T2 energy quasi-degenerate-activated DA complex. We explore the accuracy of various quantum chemical approaches to calculate the Dexter couplings.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0307 Theoretical and Computational Chemistry
- 0306 Physical Chemistry (incl. Structural)
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0307 Theoretical and Computational Chemistry
- 0306 Physical Chemistry (incl. Structural)
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics