Skip to main content
Journal cover image

The SRG/eROSITA All-Sky Survey Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters

Publication ,  Journal Article
Grandis, S; Ghirardini, V; Bocquet, S; Garrel, C; Mohr, JJ; Liu, A; Kluge, M; Kimmig, L; Reiprich, TH; Alarcon, A; Amon, A; Artis, E; Chen, R ...
Published in: Astronomy and Astrophysics
July 1, 2024

Context. Number counts of galaxy clusters across redshift are a powerful cosmological probe if a precise and accurate reconstruction of the underlying mass distribution is performed – a challenge called mass calibration. With the advent of wide and deep photometric surveys, weak gravitational lensing (WL) by clusters has become the method of choice for this measurement. Aims. We measured and validated the WL signature in the shape of galaxies observed in the first three years of the Dark Energy Survey (DES Y3) caused by galaxy clusters and groups selected in the first all-sky survey performed by SRG (Spectrum Roentgen Gamma)/eROSITA (eRASS1). These data were then used to determine the scaling between the X-ray photon count rate of the clusters and their halo mass and redshift. Methods. We empirically determined the degree of cluster member contamination in our background source sample. The individual cluster shear profiles were then analyzed with a Bayesian population model that self-consistently accounts for the lens sample selection and contamination and includes marginalization over a host of instrumental and astrophysical systematics. To quantify the accuracy of the mass extraction of that model, we performed mass measurements on mock cluster catalogs with realistic synthetic shear profiles. This allowed us to establish that hydrodynamical modeling uncertainties at low lens redshifts (z < 0.6) are the dominant systematic limitation. At high lens redshift, the uncertainties of the sources’ photometric redshift calibration dominate. Results. With regard to the X-ray count rate to halo mass relation, we determined its amplitude, its mass trend, the redshift evolution of the mass trend, the deviation from self-similar redshift evolution, and the intrinsic scatter around this relation. Conclusions. The mass calibration analysis performed here sets the stage for a joint analysis with the number counts of eRASS1 clusters to constrain a host of cosmological parameters. We demonstrate that WL mass calibration of galaxy clusters can be performed successfully with source galaxies whose calibration was performed primarily for cosmic shear experiments, opening the way for the cluster cosmological exploitation of future optical and NIR surveys like Euclid and LSST.

Duke Scholars

Published In

Astronomy and Astrophysics

DOI

EISSN

1432-0746

ISSN

0004-6361

Publication Date

July 1, 2024

Volume

687

Related Subject Headings

  • Astronomy & Astrophysics
  • 5109 Space sciences
  • 5107 Particle and high energy physics
  • 5101 Astronomical sciences
  • 0201 Astronomical and Space Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Grandis, S., Ghirardini, V., Bocquet, S., Garrel, C., Mohr, J. J., Liu, A., … García-Bellido, J. (2024). The SRG/eROSITA All-Sky Survey Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters. Astronomy and Astrophysics, 687. https://doi.org/10.1051/0004-6361/202348615
Grandis, S., V. Ghirardini, S. Bocquet, C. Garrel, J. J. Mohr, A. Liu, M. Kluge, et al. “The SRG/eROSITA All-Sky Survey Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters.” Astronomy and Astrophysics 687 (July 1, 2024). https://doi.org/10.1051/0004-6361/202348615.
Grandis S, Ghirardini V, Bocquet S, Garrel C, Mohr JJ, Liu A, et al. The SRG/eROSITA All-Sky Survey Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters. Astronomy and Astrophysics. 2024 Jul 1;687.
Grandis, S., et al. “The SRG/eROSITA All-Sky Survey Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters.” Astronomy and Astrophysics, vol. 687, July 2024. Scopus, doi:10.1051/0004-6361/202348615.
Grandis S, Ghirardini V, Bocquet S, Garrel C, Mohr JJ, Liu A, Kluge M, Kimmig L, Reiprich TH, Alarcon A, Amon A, Artis E, Bahar YE, Balzer F, Bechtol K, Becker MR, Bernstein G, Bulbul E, Campos A, Carnero Rosell A, Carrasco Kind M, Cawthon R, Chang C, Chen R, Chiu I, Choi A, Clerc N, Comparat J, Cordero J, Davis C, Derose J, Diehl HT, Dodelson S, Doux C, Drlica-Wagner A, Eckert K, Elvin-Poole J, Everett S, Ferte A, Gatti M, Giannini G, Giles P, Gruen D, Gruendl RA, Harrison I, Hartley WG, Herner K, Huff EM, Kleinebreil F, Kuropatkin N, Leget PF, Maccrann N, McCullough J, Merloni A, Myles J, Nandra K, Navarro-Alsina A, Okabe N, Pacaud F, Pandey S, Prat J, Predehl P, Ramos M, Raveri M, Rollins RP, Roodman A, Ross AJ, Rykoff ES, Sanchez C, Sanders J, Schrabback T, Secco LF, Seppi R, Sevilla-Noarbe I, Sheldon E, Shin T, Troxel M, Tutusaus I, Varga TN, Wu H, Yanny B, Yin B, Zhang X, Zhang Y, Alves O, Bhargava S, Brooks D, Burke DL, Carretero J, Costanzi M, da Costa LN, Pereira MES, De Vicente J, Desai S, Doel P, Ferrero I, Flaugher B, Friedel D, Frieman J, García-Bellido J. The SRG/eROSITA All-Sky Survey Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters. Astronomy and Astrophysics. 2024 Jul 1;687.
Journal cover image

Published In

Astronomy and Astrophysics

DOI

EISSN

1432-0746

ISSN

0004-6361

Publication Date

July 1, 2024

Volume

687

Related Subject Headings

  • Astronomy & Astrophysics
  • 5109 Space sciences
  • 5107 Particle and high energy physics
  • 5101 Astronomical sciences
  • 0201 Astronomical and Space Sciences