Artificial Intelligence Outcome Prediction in Neonates with Encephalopathy (AI-OPiNE).
Purpose To develop a deep learning algorithm to predict 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy using MRI and basic clinical data. Materials and Methods In this study, MRI data of term neonates with encephalopathy in the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) trial (ClinicalTrials.gov: NCT02811263), who were enrolled from 17 institutions between January 25, 2017, and October 9, 2019, were retrospectively analyzed. The harmonized MRI protocol included T1-weighted, T2-weighted, and diffusion tensor imaging. Deep learning classifiers were trained to predict the primary outcome of the HEAL trial (death or any neurodevelopmental impairment at 2 years) using multisequence MRI and basic clinical variables, including sex and gestational age at birth. Model performance was evaluated on test sets comprising 10% of cases from 15 institutions (in-distribution test set, n = 41) and 10% of cases from two institutions (out-of-distribution test set, n = 41). Model performance in predicting additional secondary outcomes, including death alone, was also assessed. Results For the 414 neonates (mean gestational age, 39 weeks ± 1.4 [SD]; 232 male, 182 female), in the study cohort, 198 (48%) died or had any neurodevelopmental impairment at 2 years. The deep learning model achieved an area under the receiver operating characteristic curve (AUC) of 0.74 (95% CI: 0.60, 0.86) and 63% accuracy in the in-distribution test set and an AUC of 0.77 (95% CI: 0.63, 0.90) and 78% accuracy in the out-of-distribution test set. Performance was similar or better for predicting secondary outcomes. Conclusion Deep learning analysis of neonatal brain MRI yielded high performance for predicting 2-year neurodevelopmental outcomes. Keywords: Convolutional Neural Network (CNN), Prognosis, Pediatrics, Brain, Brain Stem Clinical trial registration no. NCT02811263 Supplemental material is available for this article. © RSNA, 2024 See also commentary by Rafful and Reis Teixeira in this issue.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Retrospective Studies
- Predictive Value of Tests
- Male
- Magnetic Resonance Imaging
- Infant, Newborn
- Hypoxia-Ischemia, Brain
- Humans
- Female
- Deep Learning
- Artificial Intelligence
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Retrospective Studies
- Predictive Value of Tests
- Male
- Magnetic Resonance Imaging
- Infant, Newborn
- Hypoxia-Ischemia, Brain
- Humans
- Female
- Deep Learning
- Artificial Intelligence