The Role of Interfacial Interactions and Oxygen Vacancies in Tuning Magnetic Anisotropy in LaCrO3/LaMnO3 Heterostructures
The interplay of lattice, electronic, and spin degrees of freedom at epitaxial complex oxide interfaces provides a route to tune their magnetic ground states. Unraveling the competing contributions is critical for tuning their functional properties. The relationship between magnetic ordering and magnetic anisotropy and the lattice symmetry, oxygen content, and film thickness in compressively strained LaMnO
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
- 0912 Materials Engineering
- 0306 Physical Chemistry (incl. Structural)
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
- 0912 Materials Engineering
- 0306 Physical Chemistry (incl. Structural)