Skip to main content

Classification of Patients' Judgments of Their Physicians in Web-Based Written Reviews Using Natural Language Processing: Algorithm Development and Validation.

Publication ,  Journal Article
Madanay, F; Tu, K; Campagna, A; Davis, JK; Doerstling, SS; Chen, F; Ubel, PA
Published in: Journal of medical Internet research
August 2024

Patients increasingly rely on web-based physician reviews to choose a physician and share their experiences. However, the unstructured text of these written reviews presents a challenge for researchers seeking to make inferences about patients' judgments. Methods previously used to identify patient judgments within reviews, such as hand-coding and dictionary-based approaches, have posed limitations to sample size and classification accuracy. Advanced natural language processing methods can help overcome these limitations and promote further analysis of physician reviews on these popular platforms.This study aims to train, test, and validate an advanced natural language processing algorithm for classifying the presence and valence of 2 dimensions of patient judgments in web-based physician reviews: interpersonal manner and technical competence.We sampled 345,053 reviews for 167,150 physicians across the United States from Healthgrades.com, a commercial web-based physician rating and review website. We hand-coded 2000 written reviews and used those reviews to train and test a transformer classification algorithm called the Robustly Optimized BERT (Bidirectional Encoder Representations from Transformers) Pretraining Approach (RoBERTa). The 2 fine-tuned models coded the reviews for the presence and positive or negative valence of patients' interpersonal manner or technical competence judgments of their physicians. We evaluated the performance of the 2 models against 200 hand-coded reviews and validated the models using the full sample of 345,053 RoBERTa-coded reviews.The interpersonal manner model was 90% accurate with precision of 0.89, recall of 0.90, and weighted F1-score of 0.89. The technical competence model was 90% accurate with precision of 0.91, recall of 0.90, and weighted F1-score of 0.90. Positive-valence judgments were associated with higher review star ratings whereas negative-valence judgments were associated with lower star ratings. Analysis of the data by review rating and physician gender corresponded with findings in prior literature.Our 2 classification models coded interpersonal manner and technical competence judgments with high precision, recall, and accuracy. These models were validated using review star ratings and results from previous research. RoBERTa can accurately classify unstructured, web-based review text at scale. Future work could explore the use of this algorithm with other textual data, such as social media posts and electronic health records.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of medical Internet research

DOI

EISSN

1438-8871

ISSN

1439-4456

Publication Date

August 2024

Volume

26

Start / End Page

e50236

Related Subject Headings

  • Physicians
  • Physician-Patient Relations
  • Natural Language Processing
  • Middle Aged
  • Medical Informatics
  • Male
  • Judgment
  • Internet
  • Humans
  • Female
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Madanay, F., Tu, K., Campagna, A., Davis, J. K., Doerstling, S. S., Chen, F., & Ubel, P. A. (2024). Classification of Patients' Judgments of Their Physicians in Web-Based Written Reviews Using Natural Language Processing: Algorithm Development and Validation. Journal of Medical Internet Research, 26, e50236. https://doi.org/10.2196/50236
Madanay, Farrah, Karissa Tu, Ada Campagna, J Kelly Davis, Steven S. Doerstling, Felicia Chen, and Peter A. Ubel. “Classification of Patients' Judgments of Their Physicians in Web-Based Written Reviews Using Natural Language Processing: Algorithm Development and Validation.Journal of Medical Internet Research 26 (August 2024): e50236. https://doi.org/10.2196/50236.
Madanay F, Tu K, Campagna A, Davis JK, Doerstling SS, Chen F, et al. Classification of Patients' Judgments of Their Physicians in Web-Based Written Reviews Using Natural Language Processing: Algorithm Development and Validation. Journal of medical Internet research. 2024 Aug;26:e50236.
Madanay, Farrah, et al. “Classification of Patients' Judgments of Their Physicians in Web-Based Written Reviews Using Natural Language Processing: Algorithm Development and Validation.Journal of Medical Internet Research, vol. 26, Aug. 2024, p. e50236. Epmc, doi:10.2196/50236.
Madanay F, Tu K, Campagna A, Davis JK, Doerstling SS, Chen F, Ubel PA. Classification of Patients' Judgments of Their Physicians in Web-Based Written Reviews Using Natural Language Processing: Algorithm Development and Validation. Journal of medical Internet research. 2024 Aug;26:e50236.

Published In

Journal of medical Internet research

DOI

EISSN

1438-8871

ISSN

1439-4456

Publication Date

August 2024

Volume

26

Start / End Page

e50236

Related Subject Headings

  • Physicians
  • Physician-Patient Relations
  • Natural Language Processing
  • Middle Aged
  • Medical Informatics
  • Male
  • Judgment
  • Internet
  • Humans
  • Female