Skip to main content
Journal cover image

Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator.

Publication ,  Journal Article
Pagano, G; Bapat, A; Becker, P; Collins, KS; De, A; Hess, PW; Kaplan, HB; Kyprianidis, A; Tan, WL; Baldwin, C; Brady, LT; Deshpande, A ...
Published in: Proceedings of the National Academy of Sciences of the United States of America
October 2020

Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground-state energy of the Transverse Field Ising Model with long-range interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot, individual qubit measurements. We execute the algorithm with both an exhaustive search and closed-loop optimization of the variational parameters, approximating the ground-state energy with up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward toward the application of the QAOA to more general problem instances.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proceedings of the National Academy of Sciences of the United States of America

DOI

EISSN

1091-6490

ISSN

0027-8424

Publication Date

October 2020

Volume

117

Issue

41

Start / End Page

25396 / 25401
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pagano, G., Bapat, A., Becker, P., Collins, K. S., De, A., Hess, P. W., … Monroe, C. (2020). Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proceedings of the National Academy of Sciences of the United States of America, 117(41), 25396–25401. https://doi.org/10.1073/pnas.2006373117
Pagano, Guido, Aniruddha Bapat, Patrick Becker, Katherine S. Collins, Arinjoy De, Paul W. Hess, Harvey B. Kaplan, et al. “Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator.Proceedings of the National Academy of Sciences of the United States of America 117, no. 41 (October 2020): 25396–401. https://doi.org/10.1073/pnas.2006373117.
Pagano G, Bapat A, Becker P, Collins KS, De A, Hess PW, et al. Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proceedings of the National Academy of Sciences of the United States of America. 2020 Oct;117(41):25396–401.
Pagano, Guido, et al. “Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator.Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 41, Oct. 2020, pp. 25396–401. Epmc, doi:10.1073/pnas.2006373117.
Pagano G, Bapat A, Becker P, Collins KS, De A, Hess PW, Kaplan HB, Kyprianidis A, Tan WL, Baldwin C, Brady LT, Deshpande A, Liu F, Jordan S, Gorshkov AV, Monroe C. Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proceedings of the National Academy of Sciences of the United States of America. 2020 Oct;117(41):25396–25401.
Journal cover image

Published In

Proceedings of the National Academy of Sciences of the United States of America

DOI

EISSN

1091-6490

ISSN

0027-8424

Publication Date

October 2020

Volume

117

Issue

41

Start / End Page

25396 / 25401