Quantum control of qubits and atomic motion using ultrafast laser pulses
Pulsed lasers offer significant advantages over continuous wave (CW) lasers in the coherent control of qubits. Here we review the theoretical and experimental aspects of controlling the internal and external states of individual trapped atoms with pulse trains. Two distinct regimes of laser intensity are identified. When the pulses are sufficiently weak that the Rabi frequency Ω is much smaller than the trap frequency ω trap, sideband transitions can be addressed and atom-atom entanglement can be accomplished in much the same way as with CW lasers. By contrast, if the pulses are very strong Ω ≫ω trap, impulsive spin-dependent kicks can be combined to create entangling gates which are much faster than a trap period. These fast entangling gates should work outside of the Lamb-Dicke regime and be insensitive to thermal atomic motion. © 2013 Springer-Verlag Berlin Heidelberg.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 5102 Atomic, molecular and optical physics
- 4017 Mechanical engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 5102 Atomic, molecular and optical physics
- 4017 Mechanical engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics