Skip to main content

Macrophage-Mediated Effects of Airborne Fine Particulate Matter (PM2.5) on Hepatocyte Insulin Resistance in Vitro

Publication ,  Journal Article
Li, R; Qiu, X; Xu, F; Lin, Y; Fang, Y; Zhu, T
Published in: ACS Omega
November 30, 2016

Fine particulate matter (PM2.5) pollution poses significant health risks worldwide, including metabolic syndrome-related diseases with the characteristic feature of insulin resistance. However, the mechanism and influencing factors of this effect are poorly understood. In this serial in vitro study, we aimed at testing the hypothesis that macrophage-mediated effects of PM2.5 on hepatic insulin resistance depend on its chemical composition. Mouse macrophages were exposed to PM2.5 that had been collected during summer or winter in Beijing, which represented different compositions of PM2.5. Thereafter, hepatocytes were treated with macrophage-conditioned medium (CM). PM2.5 induced interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 expression and secretion in macrophages, particularly after winter PM2.5 exposure. Correspondingly, winter CM weakened hepatocellular insulin-stimulated glucose consumption. Further investigation revealed that the normal insulin pathway was suppressed in winter CM-treated hepatocytes, with increased phosphorylation of insulin receptor substrate 1 at serine residue 307 (Ser307) and decreased phosphorylation of protein kinase B (PKB/AKT) and forkhead box transcription factor O1 (FoxO1). Moreover, c-Jun N-terminal kinase, a key moderator of the sensitivity response to insulin stimulation, was activated in hepatocytes treated with winter CM. Although further studies are warranted, this preliminary study suggested an association between PM composition and insulin resistance, thus contributing to our understanding of the systemic toxicity of PM2.5.

Duke Scholars

Published In

ACS Omega

DOI

EISSN

2470-1343

Publication Date

November 30, 2016

Volume

1

Issue

5

Start / End Page

736 / 743

Related Subject Headings

  • 4004 Chemical engineering
  • 3406 Physical chemistry
  • 3403 Macromolecular and materials chemistry
  • 0912 Materials Engineering
  • 0904 Chemical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Li, R., Qiu, X., Xu, F., Lin, Y., Fang, Y., & Zhu, T. (2016). Macrophage-Mediated Effects of Airborne Fine Particulate Matter (PM2.5) on Hepatocyte Insulin Resistance in Vitro. ACS Omega, 1(5), 736–743. https://doi.org/10.1021/acsomega.6b00135
Li, R., X. Qiu, F. Xu, Y. Lin, Y. Fang, and T. Zhu. “Macrophage-Mediated Effects of Airborne Fine Particulate Matter (PM2.5) on Hepatocyte Insulin Resistance in Vitro.” ACS Omega 1, no. 5 (November 30, 2016): 736–43. https://doi.org/10.1021/acsomega.6b00135.
Li R, Qiu X, Xu F, Lin Y, Fang Y, Zhu T. Macrophage-Mediated Effects of Airborne Fine Particulate Matter (PM2.5) on Hepatocyte Insulin Resistance in Vitro. ACS Omega. 2016 Nov 30;1(5):736–43.
Li, R., et al. “Macrophage-Mediated Effects of Airborne Fine Particulate Matter (PM2.5) on Hepatocyte Insulin Resistance in Vitro.” ACS Omega, vol. 1, no. 5, Nov. 2016, pp. 736–43. Scopus, doi:10.1021/acsomega.6b00135.
Li R, Qiu X, Xu F, Lin Y, Fang Y, Zhu T. Macrophage-Mediated Effects of Airborne Fine Particulate Matter (PM2.5) on Hepatocyte Insulin Resistance in Vitro. ACS Omega. 2016 Nov 30;1(5):736–743.

Published In

ACS Omega

DOI

EISSN

2470-1343

Publication Date

November 30, 2016

Volume

1

Issue

5

Start / End Page

736 / 743

Related Subject Headings

  • 4004 Chemical engineering
  • 3406 Physical chemistry
  • 3403 Macromolecular and materials chemistry
  • 0912 Materials Engineering
  • 0904 Chemical Engineering