The G -invariant graph Laplacian part II: Diffusion maps.
The diffusion maps embedding of data lying on a manifold has shown success in tasks such as dimensionality reduction, clustering, and data visualization. In this work, we consider embedding data sets that were sampled from a manifold which is closed under the action of a continuous matrix group. An example of such a data set is images whose planar rotations are arbitrary. The G -invariant graph Laplacian, introduced in Part I of this work, admits eigenfunctions in the form of tensor products between the elements of the irreducible unitary representations of the group and eigenvectors of certain matrices. We employ these eigenfunctions to derive diffusion maps that intrinsically account for the group action on the data. In particular, we construct both equivariant and invariant embeddings, which can be used to cluster and align the data points. We demonstrate the utility of our construction in the problem of random computerized tomography.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics