Skip to main content
Journal cover image

Machine Learning for Targeted Advance Care Planning in Cancer Patients: A Quality Improvement Study.

Publication ,  Journal Article
Patel, MN; Mara, A; Acker, Y; Gollon, J; Setji, N; Walter, J; Wolf, S; Zafar, SY; Balu, S; Gao, M; Sendak, M; Casarett, D; LeBlanc, TW; Ma, J
Published in: J Pain Symptom Manage
December 2024

CONTEXT: Prognostication challenges contribute to delays in advance care planning (ACP) for patients with cancer near the end of life (EOL). OBJECTIVES: Examine a quality improvement mortality prediction algorithm intervention's impact on ACP documentation and EOL care. METHODS: We implemented a validated mortality risk prediction machine learning model for solid malignancy patients admitted from the emergency department (ED) to a dedicated solid malignancy unit at Duke University Hospital. Clinicians received an email when a patient was identified as high-risk. We compared ACP documentation and EOL care outcomes before and after the notification intervention. We excluded patients with intensive care unit (ICU) admission in the first 24 hours. Comparisons involved chi-square/Fisher's exact tests and Wilcoxon rank sum tests; comparisons stratified by physician specialty employ Cochran-Mantel-Haenszel tests. RESULTS: Preintervention and postintervention cohorts comprised 88 and 77 patients, respectively. Most were White, non-Hispanic/Latino, and married. ACP conversations were documented for 2.3% of hospitalizations preintervention vs. 80.5% postintervention (P<0.001), and if the attending physician notified was a palliative care specialist (4.1% vs. 84.6%) or oncologist (0% vs. 76.3%) (P<0.001). There were no differences between groups in length of stay (LOS), hospice referral, code status change, ICU admissions or LOS, 30-day readmissions, 30-day ED visits, and inpatient and 30-day deaths. CONCLUSION: Identifying patients with cancer and high mortality risk via machine learning elicited a substantial increase in documented ACP conversations but did not impact EOL care. Our intervention showed promise in changing clinician behavior. Further integration of this model in clinical practice is ongoing.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Pain Symptom Manage

DOI

EISSN

1873-6513

Publication Date

December 2024

Volume

68

Issue

6

Start / End Page

539 / 547.e3

Location

United States

Related Subject Headings

  • Terminal Care
  • Quality Improvement
  • Neoplasms
  • Middle Aged
  • Male
  • Machine Learning
  • Humans
  • Female
  • Emergency Service, Hospital
  • Documentation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Patel, M. N., Mara, A., Acker, Y., Gollon, J., Setji, N., Walter, J., … Ma, J. (2024). Machine Learning for Targeted Advance Care Planning in Cancer Patients: A Quality Improvement Study. J Pain Symptom Manage, 68(6), 539-547.e3. https://doi.org/10.1016/j.jpainsymman.2024.08.036
Patel, Mihir N., Alexandria Mara, Yvonne Acker, Jamie Gollon, Noppon Setji, Jonathan Walter, Steven Wolf, et al. “Machine Learning for Targeted Advance Care Planning in Cancer Patients: A Quality Improvement Study.J Pain Symptom Manage 68, no. 6 (December 2024): 539-547.e3. https://doi.org/10.1016/j.jpainsymman.2024.08.036.
Patel MN, Mara A, Acker Y, Gollon J, Setji N, Walter J, et al. Machine Learning for Targeted Advance Care Planning in Cancer Patients: A Quality Improvement Study. J Pain Symptom Manage. 2024 Dec;68(6):539-547.e3.
Patel, Mihir N., et al. “Machine Learning for Targeted Advance Care Planning in Cancer Patients: A Quality Improvement Study.J Pain Symptom Manage, vol. 68, no. 6, Dec. 2024, pp. 539-547.e3. Pubmed, doi:10.1016/j.jpainsymman.2024.08.036.
Patel MN, Mara A, Acker Y, Gollon J, Setji N, Walter J, Wolf S, Zafar SY, Balu S, Gao M, Sendak M, Casarett D, LeBlanc TW, Ma J. Machine Learning for Targeted Advance Care Planning in Cancer Patients: A Quality Improvement Study. J Pain Symptom Manage. 2024 Dec;68(6):539-547.e3.
Journal cover image

Published In

J Pain Symptom Manage

DOI

EISSN

1873-6513

Publication Date

December 2024

Volume

68

Issue

6

Start / End Page

539 / 547.e3

Location

United States

Related Subject Headings

  • Terminal Care
  • Quality Improvement
  • Neoplasms
  • Middle Aged
  • Male
  • Machine Learning
  • Humans
  • Female
  • Emergency Service, Hospital
  • Documentation