The dark energy survey supernova program: investigating beyond-ΛCDM
We report constraints on a variety of non-standard cosmological models using the full 5-yr photometrically classified type Ia supernova sample from the Dark Energy Survey (DES-SN5YR). Both Akaike Information Criterion (AIC) and Suspiciousness calculations find no strong evidence for or against any of the non-standard models we explore. When combined with external probes, the AIC and Suspiciousness agree that 11 of the 15 models are moderately preferred over Flat-ΛCDM suggesting additional flexibility in our cosmological models may be required beyond the cosmological constant. We also provide a detailed discussion of all cosmological assumptions that appear in the DES supernova cosmology analyses, evaluate their impact, and provide guidance on using the DES Hubble diagram to test non-standard models. An approximate cosmological model, used to perform bias corrections to the data holds the biggest potential for harbouring cosmological assumptions. We show that even if the approximate cosmological model is constructed with a matter density shifted by ΔΩm ∼ 0.2 from the true matter density of a simulated data set the bias that arises is subdominant to statistical uncertainties. Nevertheless, we present and validate a methodology to reduce this bias.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Astronomy & Astrophysics
- 5109 Space sciences
- 5107 Particle and high energy physics
- 5101 Astronomical sciences
- 0201 Astronomical and Space Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Astronomy & Astrophysics
- 5109 Space sciences
- 5107 Particle and high energy physics
- 5101 Astronomical sciences
- 0201 Astronomical and Space Sciences