Skip to main content
Journal cover image

On Polynomial Carleson Operators Along Quadratic Hypersurfaces

Publication ,  Journal Article
Anderson, TC; Maldague, D; Pierce, LB; Yung, PL
Published in: Journal of Geometric Analysis
October 1, 2024

We prove that a maximally modulated singular oscillatory integral operator along a hypersurface defined by (y,Q(y))⊆Rn+1, for an arbitrary non-degenerate quadratic form Q, admits an a priori bound on Lp for all 1

Duke Scholars

Published In

Journal of Geometric Analysis

DOI

ISSN

1050-6926

Publication Date

October 1, 2024

Volume

34

Issue

10

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Anderson, T. C., Maldague, D., Pierce, L. B., & Yung, P. L. (2024). On Polynomial Carleson Operators Along Quadratic Hypersurfaces. Journal of Geometric Analysis, 34(10). https://doi.org/10.1007/s12220-024-01676-9
Anderson, T. C., D. Maldague, L. B. Pierce, and P. L. Yung. “On Polynomial Carleson Operators Along Quadratic Hypersurfaces.” Journal of Geometric Analysis 34, no. 10 (October 1, 2024). https://doi.org/10.1007/s12220-024-01676-9.
Anderson TC, Maldague D, Pierce LB, Yung PL. On Polynomial Carleson Operators Along Quadratic Hypersurfaces. Journal of Geometric Analysis. 2024 Oct 1;34(10).
Anderson, T. C., et al. “On Polynomial Carleson Operators Along Quadratic Hypersurfaces.” Journal of Geometric Analysis, vol. 34, no. 10, Oct. 2024. Scopus, doi:10.1007/s12220-024-01676-9.
Anderson TC, Maldague D, Pierce LB, Yung PL. On Polynomial Carleson Operators Along Quadratic Hypersurfaces. Journal of Geometric Analysis. 2024 Oct 1;34(10).
Journal cover image

Published In

Journal of Geometric Analysis

DOI

ISSN

1050-6926

Publication Date

October 1, 2024

Volume

34

Issue

10

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0101 Pure Mathematics