On Polynomial Carleson Operators Along Quadratic Hypersurfaces
Publication
, Journal Article
Anderson, TC; Maldague, D; Pierce, LB; Yung, PL
Published in: Journal of Geometric Analysis
October 1, 2024
We prove that a maximally modulated singular oscillatory integral operator along a hypersurface defined by (y,Q(y))⊆Rn+1, for an arbitrary non-degenerate quadratic form Q, admits an a priori bound on Lp for all 1
Duke Scholars
Published In
Journal of Geometric Analysis
DOI
ISSN
1050-6926
Publication Date
October 1, 2024
Volume
34
Issue
10
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Anderson, T. C., Maldague, D., Pierce, L. B., & Yung, P. L. (2024). On Polynomial Carleson Operators Along Quadratic Hypersurfaces. Journal of Geometric Analysis, 34(10). https://doi.org/10.1007/s12220-024-01676-9
Anderson, T. C., D. Maldague, L. B. Pierce, and P. L. Yung. “On Polynomial Carleson Operators Along Quadratic Hypersurfaces.” Journal of Geometric Analysis 34, no. 10 (October 1, 2024). https://doi.org/10.1007/s12220-024-01676-9.
Anderson TC, Maldague D, Pierce LB, Yung PL. On Polynomial Carleson Operators Along Quadratic Hypersurfaces. Journal of Geometric Analysis. 2024 Oct 1;34(10).
Anderson, T. C., et al. “On Polynomial Carleson Operators Along Quadratic Hypersurfaces.” Journal of Geometric Analysis, vol. 34, no. 10, Oct. 2024. Scopus, doi:10.1007/s12220-024-01676-9.
Anderson TC, Maldague D, Pierce LB, Yung PL. On Polynomial Carleson Operators Along Quadratic Hypersurfaces. Journal of Geometric Analysis. 2024 Oct 1;34(10).
Published In
Journal of Geometric Analysis
DOI
ISSN
1050-6926
Publication Date
October 1, 2024
Volume
34
Issue
10
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0101 Pure Mathematics