3D Object Detection with VI-SLAM Point Clouds: The Impact of Object and Environment Characteristics on Model Performance
3D object detection (OD) is a crucial element in scene understanding. However, most existing 3D OD models have been tailored to work with light detection and ranging (LiDAR) and RGB-D point cloud data, leaving their performance on commonly available visual-inertial simultaneous localization and mapping (VI-SLAM) point clouds unexamined. In this paper, we create and release two datasets: VIP500, 4772 VI-SLAM point clouds covering 500 different object and environment configurations, and VIP500-D, an accompanying set of 20 RGB-D point clouds for the object classes and shapes in VIP500. We then use these datasets to quantify the differences between VI-SLAM point clouds and dense RGB-D point clouds, as well as the discrepancies between VI-SLAM point clouds generated with different object and environment characteristics. Finally, we evaluate the performance of three leading OD models on the diverse data in our VIP500 dataset, revealing the promise of OD models trained on VI-SLAM data; we examine the extent to which both object and environment characteristics impact performance, along with the underlying causes.