Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications
Publication
, Journal Article
Fortunati, S; Gini, F; Greco, MS; Richmond, CD
Published in: IEEE Signal Processing Magazine
November 1, 2017
Inferring information from a set of acquired data is the main objective of any signal processing (SP) method. The common problem of estimating the value of a vector of parameters from a set of noisy measurements is at the core of a plethora of scientific and technological advances in recent decades, including wireless communications, radar and sonar, biomedicine, image processing, and seismology.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
IEEE Signal Processing Magazine
DOI
ISSN
1053-5888
Publication Date
November 1, 2017
Volume
34
Issue
6
Start / End Page
142 / 157
Related Subject Headings
- Networking & Telecommunications
- 4603 Computer vision and multimedia computation
- 4006 Communications engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing
Citation
APA
Chicago
ICMJE
MLA
NLM
Fortunati, S., Gini, F., Greco, M. S., & Richmond, C. D. (2017). Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications. IEEE Signal Processing Magazine, 34(6), 142–157. https://doi.org/10.1109/MSP.2017.2738017
Fortunati, S., F. Gini, M. S. Greco, and C. D. Richmond. “Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications.” IEEE Signal Processing Magazine 34, no. 6 (November 1, 2017): 142–57. https://doi.org/10.1109/MSP.2017.2738017.
Fortunati S, Gini F, Greco MS, Richmond CD. Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications. IEEE Signal Processing Magazine. 2017 Nov 1;34(6):142–57.
Fortunati, S., et al. “Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications.” IEEE Signal Processing Magazine, vol. 34, no. 6, Nov. 2017, pp. 142–57. Scopus, doi:10.1109/MSP.2017.2738017.
Fortunati S, Gini F, Greco MS, Richmond CD. Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications. IEEE Signal Processing Magazine. 2017 Nov 1;34(6):142–157.
Published In
IEEE Signal Processing Magazine
DOI
ISSN
1053-5888
Publication Date
November 1, 2017
Volume
34
Issue
6
Start / End Page
142 / 157
Related Subject Headings
- Networking & Telecommunications
- 4603 Computer vision and multimedia computation
- 4006 Communications engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing