Skip to main content

A Data-Assisted Two-Stage Method for the Inverse Random Source Problem

Publication ,  Journal Article
Li, P; Liang, Y; Wang, Y
Published in: SIAM Journal on Imaging Sciences
December 31, 2023

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

SIAM Journal on Imaging Sciences

DOI

EISSN

1936-4954

Publication Date

December 31, 2023

Volume

16

Issue

4

Start / End Page

1929 / 1952

Publisher

Society for Industrial & Applied Mathematics (SIAM)

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 4901 Applied mathematics
  • 4603 Computer vision and multimedia computation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Li, P., Liang, Y., & Wang, Y. (2023). A Data-Assisted Two-Stage Method for the Inverse Random Source Problem. SIAM Journal on Imaging Sciences, 16(4), 1929–1952. https://doi.org/10.1137/23m1562561
Li, Peijun, Ying Liang, and Yuliang Wang. “A Data-Assisted Two-Stage Method for the Inverse Random Source Problem.” SIAM Journal on Imaging Sciences 16, no. 4 (December 31, 2023): 1929–52. https://doi.org/10.1137/23m1562561.
Li P, Liang Y, Wang Y. A Data-Assisted Two-Stage Method for the Inverse Random Source Problem. SIAM Journal on Imaging Sciences. 2023 Dec 31;16(4):1929–52.
Li, Peijun, et al. “A Data-Assisted Two-Stage Method for the Inverse Random Source Problem.” SIAM Journal on Imaging Sciences, vol. 16, no. 4, Society for Industrial & Applied Mathematics (SIAM), Dec. 2023, pp. 1929–52. Crossref, doi:10.1137/23m1562561.
Li P, Liang Y, Wang Y. A Data-Assisted Two-Stage Method for the Inverse Random Source Problem. SIAM Journal on Imaging Sciences. Society for Industrial & Applied Mathematics (SIAM); 2023 Dec 31;16(4):1929–1952.

Published In

SIAM Journal on Imaging Sciences

DOI

EISSN

1936-4954

Publication Date

December 31, 2023

Volume

16

Issue

4

Start / End Page

1929 / 1952

Publisher

Society for Industrial & Applied Mathematics (SIAM)

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 4901 Applied mathematics
  • 4603 Computer vision and multimedia computation