Skip to main content
Journal cover image

Nonparametric priors with full-range borrowing of information

Publication ,  Journal Article
Ascolani, F; Franzolini, B; Lijoi, A; Prünster, I
Published in: Biometrika
September 1, 2024

Modelling of the dependence structure across heterogeneous data is crucial for Bayesian inference, since it directly impacts the borrowing of information. Despite extensive advances over the past two decades, most available methods only allow for nonnegative correlations. We derive a new class of dependent nonparametric priors that can induce correlations of any sign, thus introducing a new and more flexible idea of borrowing of information. This is achieved thanks to a novel concept, which we term hyper-tie, and represents a direct and simple measure of dependence.We investigate prior and posterior distributional properties of the model and develop algorithms to perform posterior inference. Illustrative examples on simulated and real data showthat the proposed method outperforms alternatives in terms of prediction and clustering.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biometrika

DOI

EISSN

1464-3510

ISSN

0006-3444

Publication Date

September 1, 2024

Volume

111

Issue

3

Start / End Page

945 / 969

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 3802 Econometrics
  • 1403 Econometrics
  • 0104 Statistics
  • 0103 Numerical and Computational Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Ascolani, F., Franzolini, B., Lijoi, A., & Prünster, I. (2024). Nonparametric priors with full-range borrowing of information. Biometrika, 111(3), 945–969. https://doi.org/10.1093/biomet/asad063
Ascolani, F., B. Franzolini, A. Lijoi, and I. Prünster. “Nonparametric priors with full-range borrowing of information.” Biometrika 111, no. 3 (September 1, 2024): 945–69. https://doi.org/10.1093/biomet/asad063.
Ascolani F, Franzolini B, Lijoi A, Prünster I. Nonparametric priors with full-range borrowing of information. Biometrika. 2024 Sep 1;111(3):945–69.
Ascolani, F., et al. “Nonparametric priors with full-range borrowing of information.” Biometrika, vol. 111, no. 3, Sept. 2024, pp. 945–69. Scopus, doi:10.1093/biomet/asad063.
Ascolani F, Franzolini B, Lijoi A, Prünster I. Nonparametric priors with full-range borrowing of information. Biometrika. 2024 Sep 1;111(3):945–969.
Journal cover image

Published In

Biometrika

DOI

EISSN

1464-3510

ISSN

0006-3444

Publication Date

September 1, 2024

Volume

111

Issue

3

Start / End Page

945 / 969

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 3802 Econometrics
  • 1403 Econometrics
  • 0104 Statistics
  • 0103 Numerical and Computational Mathematics