Skip to main content

Three-dimensional MR Fingerprinting for Quantitative Breast Imaging.

Publication ,  Journal Article
Chen, Y; Panda, A; Pahwa, S; Hamilton, JI; Dastmalchian, S; McGivney, DF; Ma, D; Batesole, J; Seiberlich, N; Griswold, MA; Plecha, D; Gulani, V
Published in: Radiology
January 2019

Purpose To develop a fast three-dimensional method for simultaneous T1 and T2 quantification for breast imaging by using MR fingerprinting. Materials and Methods In this prospective study, variable flip angles and magnetization preparation modules were applied to acquire MR fingerprinting data for each partition of a three-dimensional data set. A fast postprocessing method was implemented by using singular value decomposition. The proposed technique was first validated in phantoms and then applied to 15 healthy female participants (mean age, 24.2 years ± 5.1 [standard deviation]; range, 18-35 years) and 14 female participants with breast cancer (mean age, 55.4 years ± 8.8; range, 39-66 years) between March 2016 and April 2018. The sensitivity of the method to B1 field inhomogeneity was also evaluated by using the Bloch-Siegert method. Results Phantom results showed that accurate and volumetric T1 and T2 quantification was achieved by using the proposed technique. The acquisition time for three-dimensional quantitative maps with a spatial resolution of 1.6 × 1.6 × 3 mm3 was approximately 6 minutes. For healthy participants, averaged T1 and T2 relaxation times for fibroglandular tissues at 3.0 T were 1256 msec ± 171 and 46 msec ± 7, respectively. Compared with normal breast tissues, higher T2 relaxation time (68 msec ± 13) was observed in invasive ductal carcinoma (P < .001), whereas no statistical difference was found in T1 relaxation time (1183 msec ± 256; P = .37). Conclusion A method was developed for breast imaging by using the MR fingerprinting technique, which allows simultaneous and volumetric quantification of T1 and T2 relaxation times for breast tissues. © RSNA, 2018 Online supplemental material is available for this article.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Radiology

DOI

EISSN

1527-1315

Publication Date

January 2019

Volume

290

Issue

1

Start / End Page

33 / 40

Location

United States

Related Subject Headings

  • Young Adult
  • Prospective Studies
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Middle Aged
  • Magnetic Resonance Imaging
  • Imaging, Three-Dimensional
  • Humans
  • Female
  • Breast Neoplasms
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chen, Y., Panda, A., Pahwa, S., Hamilton, J. I., Dastmalchian, S., McGivney, D. F., … Gulani, V. (2019). Three-dimensional MR Fingerprinting for Quantitative Breast Imaging. Radiology, 290(1), 33–40. https://doi.org/10.1148/radiol.2018180836
Chen, Yong, Ananya Panda, Shivani Pahwa, Jesse I. Hamilton, Sara Dastmalchian, Debra F. McGivney, Dan Ma, et al. “Three-dimensional MR Fingerprinting for Quantitative Breast Imaging.Radiology 290, no. 1 (January 2019): 33–40. https://doi.org/10.1148/radiol.2018180836.
Chen Y, Panda A, Pahwa S, Hamilton JI, Dastmalchian S, McGivney DF, et al. Three-dimensional MR Fingerprinting for Quantitative Breast Imaging. Radiology. 2019 Jan;290(1):33–40.
Chen, Yong, et al. “Three-dimensional MR Fingerprinting for Quantitative Breast Imaging.Radiology, vol. 290, no. 1, Jan. 2019, pp. 33–40. Pubmed, doi:10.1148/radiol.2018180836.
Chen Y, Panda A, Pahwa S, Hamilton JI, Dastmalchian S, McGivney DF, Ma D, Batesole J, Seiberlich N, Griswold MA, Plecha D, Gulani V. Three-dimensional MR Fingerprinting for Quantitative Breast Imaging. Radiology. 2019 Jan;290(1):33–40.

Published In

Radiology

DOI

EISSN

1527-1315

Publication Date

January 2019

Volume

290

Issue

1

Start / End Page

33 / 40

Location

United States

Related Subject Headings

  • Young Adult
  • Prospective Studies
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Middle Aged
  • Magnetic Resonance Imaging
  • Imaging, Three-Dimensional
  • Humans
  • Female
  • Breast Neoplasms