Skip to main content

SVD compression for magnetic resonance fingerprinting in the time domain.

Publication ,  Journal Article
McGivney, DF; Pierre, E; Ma, D; Jiang, Y; Saybasili, H; Gulani, V; Griswold, MA
Published in: IEEE Trans Med Imaging
December 2014

Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

IEEE Trans Med Imaging

DOI

EISSN

1558-254X

Publication Date

December 2014

Volume

33

Issue

12

Start / End Page

2311 / 2322

Location

United States

Related Subject Headings

  • Signal-To-Noise Ratio
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Image Processing, Computer-Assisted
  • Humans
  • Data Compression
  • Brain
  • Algorithms
  • 46 Information and computing sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
McGivney, D. F., Pierre, E., Ma, D., Jiang, Y., Saybasili, H., Gulani, V., & Griswold, M. A. (2014). SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging, 33(12), 2311–2322. https://doi.org/10.1109/TMI.2014.2337321
McGivney, Debra F., Eric Pierre, Dan Ma, Yun Jiang, Haris Saybasili, Vikas Gulani, and Mark A. Griswold. “SVD compression for magnetic resonance fingerprinting in the time domain.IEEE Trans Med Imaging 33, no. 12 (December 2014): 2311–22. https://doi.org/10.1109/TMI.2014.2337321.
McGivney DF, Pierre E, Ma D, Jiang Y, Saybasili H, Gulani V, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014 Dec;33(12):2311–22.
McGivney, Debra F., et al. “SVD compression for magnetic resonance fingerprinting in the time domain.IEEE Trans Med Imaging, vol. 33, no. 12, Dec. 2014, pp. 2311–22. Pubmed, doi:10.1109/TMI.2014.2337321.
McGivney DF, Pierre E, Ma D, Jiang Y, Saybasili H, Gulani V, Griswold MA. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014 Dec;33(12):2311–2322.

Published In

IEEE Trans Med Imaging

DOI

EISSN

1558-254X

Publication Date

December 2014

Volume

33

Issue

12

Start / End Page

2311 / 2322

Location

United States

Related Subject Headings

  • Signal-To-Noise Ratio
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Image Processing, Computer-Assisted
  • Humans
  • Data Compression
  • Brain
  • Algorithms
  • 46 Information and computing sciences