Skip to main content
Journal cover image

Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use.

Publication ,  Journal Article
Sperling, J; Welsh, W; Haseley, E; Quenstedt, S; Muhigaba, PB; Brown, A; Ephraim, P; Shafi, T; Waitzkin, M; Casarett, D; Goldstein, BA
Published in: J Am Med Inform Assoc
January 1, 2025

OBJECTIVES: This study aims to improve the ethical use of machine learning (ML)-based clinical prediction models (CPMs) in shared decision-making for patients with kidney failure on dialysis. We explore factors that inform acceptability, interpretability, and implementation of ML-based CPMs among multiple constituent groups. MATERIALS AND METHODS: We collected and analyzed qualitative data from focus groups with varied end users, including: dialysis support providers (clinical providers and additional dialysis support providers such as dialysis clinic staff and social workers); patients; patients' caregivers (n = 52). RESULTS: Participants were broadly accepting of ML-based CPMs, but with concerns on data sources, factors included in the model, and accuracy. Use was desired in conjunction with providers' views and explanations. Differences among respondent types were minimal overall but most prevalent in discussions of CPM presentation and model use. DISCUSSION AND CONCLUSION: Evidence of acceptability of ML-based CPM usage provides support for ethical use, but numerous specific considerations in acceptability, model construction, and model use for shared clinical decision-making must be considered. There are specific steps that could be taken by data scientists and health systems to engender use that is accepted by end users and facilitates trust, but there are also ongoing barriers or challenges in addressing desires for use. This study contributes to emerging literature on interpretability, mechanisms for sharing complexities, including uncertainty regarding the model results, and implications for decision-making. It examines numerous stakeholder groups including providers, patients, and caregivers to provide specific considerations that can influence health system use and provide a basis for future research.

Duke Scholars

Published In

J Am Med Inform Assoc

DOI

EISSN

1527-974X

Publication Date

January 1, 2025

Volume

32

Issue

1

Start / End Page

51 / 62

Location

England

Related Subject Headings

  • Trust
  • Renal Dialysis
  • Middle Aged
  • Medical Informatics
  • Male
  • Machine Learning
  • Humans
  • Focus Groups
  • Female
  • Decision Making, Shared
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sperling, J., Welsh, W., Haseley, E., Quenstedt, S., Muhigaba, P. B., Brown, A., … Goldstein, B. A. (2025). Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use. J Am Med Inform Assoc, 32(1), 51–62. https://doi.org/10.1093/jamia/ocae255
Sperling, Jessica, Whitney Welsh, Erin Haseley, Stella Quenstedt, Perusi B. Muhigaba, Adrian Brown, Patti Ephraim, et al. “Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use.J Am Med Inform Assoc 32, no. 1 (January 1, 2025): 51–62. https://doi.org/10.1093/jamia/ocae255.
Sperling J, Welsh W, Haseley E, Quenstedt S, Muhigaba PB, Brown A, et al. Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use. J Am Med Inform Assoc. 2025 Jan 1;32(1):51–62.
Sperling, Jessica, et al. “Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use.J Am Med Inform Assoc, vol. 32, no. 1, Jan. 2025, pp. 51–62. Pubmed, doi:10.1093/jamia/ocae255.
Sperling J, Welsh W, Haseley E, Quenstedt S, Muhigaba PB, Brown A, Ephraim P, Shafi T, Waitzkin M, Casarett D, Goldstein BA. Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use. J Am Med Inform Assoc. 2025 Jan 1;32(1):51–62.
Journal cover image

Published In

J Am Med Inform Assoc

DOI

EISSN

1527-974X

Publication Date

January 1, 2025

Volume

32

Issue

1

Start / End Page

51 / 62

Location

England

Related Subject Headings

  • Trust
  • Renal Dialysis
  • Middle Aged
  • Medical Informatics
  • Male
  • Machine Learning
  • Humans
  • Focus Groups
  • Female
  • Decision Making, Shared