Skip to main content
construction release_alert
Scholars@Duke will be down for maintenance for approximately one hour starting Tuesday, 11/11 @1pm ET
cancel
Journal cover image

Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study.

Publication ,  Journal Article
Akbari, H; Bakas, S; Sako, C; Fathi Kazerooni, A; Villanueva-Meyer, J; Garcia, JA; Mamourian, E; Liu, F; Cao, Q; Shinohara, RT; Baid, U; Ak, M ...
Published in: Neuro Oncol
May 15, 2025

BACKGROUND: Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification. METHODS: We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]). RESULTS: The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95% CI: 1.43-1.84, P < .001) and 3.48 (95% CI: 2.94-4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort. CONCLUSIONS: Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Neuro Oncol

DOI

EISSN

1523-5866

Publication Date

May 15, 2025

Volume

27

Issue

4

Start / End Page

1102 / 1115

Location

England

Related Subject Headings

  • Young Adult
  • Survival Rate
  • Prognosis
  • Oncology & Carcinogenesis
  • Middle Aged
  • Male
  • Magnetic Resonance Imaging
  • Machine Learning
  • Humans
  • Glioblastoma
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Akbari, H., Bakas, S., Sako, C., Fathi Kazerooni, A., Villanueva-Meyer, J., Garcia, J. A., … ReSPOND consortium. (2025). Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study. Neuro Oncol, 27(4), 1102–1115. https://doi.org/10.1093/neuonc/noae260
Akbari, Hamed, Spyridon Bakas, Chiharu Sako, Anahita Fathi Kazerooni, Javier Villanueva-Meyer, Jose A. Garcia, Elizabeth Mamourian, et al. “Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study.Neuro Oncol 27, no. 4 (May 15, 2025): 1102–15. https://doi.org/10.1093/neuonc/noae260.
Akbari H, Bakas S, Sako C, Fathi Kazerooni A, Villanueva-Meyer J, Garcia JA, et al. Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study. Neuro Oncol. 2025 May 15;27(4):1102–15.
Akbari, Hamed, et al. “Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study.Neuro Oncol, vol. 27, no. 4, May 2025, pp. 1102–15. Pubmed, doi:10.1093/neuonc/noae260.
Akbari H, Bakas S, Sako C, Fathi Kazerooni A, Villanueva-Meyer J, Garcia JA, Mamourian E, Liu F, Cao Q, Shinohara RT, Baid U, Getka A, Pati S, Singh A, Calabrese E, Chang S, Rudie J, Sotiras A, LaMontagne P, Marcus DS, Milchenko M, Nazeri A, Balana C, Capellades J, Puig J, Badve C, Barnholtz-Sloan JS, Sloan AE, Vadmal V, Waite K, Ak M, Colen RR, Park YW, Ahn SS, Chang JH, Choi YS, Lee S-K, Alexander GS, Ali AS, Dicker AP, Flanders AE, Liem S, Lombardo J, Shi W, Shukla G, Griffith B, Poisson LM, Rogers LR, Kotrotsou A, Booth TC, Jain R, Lee M, Mahajan A, Chakravarti A, Palmer JD, DiCostanzo D, Fathallah-Shaykh H, Cepeda S, Santonocito OS, Di Stefano AL, Wiestler B, Melhem ER, Woodworth GF, Tiwari P, Valdes P, Matsumoto Y, Otani Y, Imoto R, Aboian M, Koizumi S, Kurozumi K, Kawakatsu T, Alexander K, Satgunaseelan L, Rulseh AM, Bagley SJ, Bilello M, Binder ZA, Brem S, Desai AS, Lustig RA, Maloney E, Prior T, Amankulor N, Nasrallah MP, O’Rourke DM, Mohan S, Davatzikos C, ReSPOND consortium. Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study. Neuro Oncol. 2025 May 15;27(4):1102–1115.
Journal cover image

Published In

Neuro Oncol

DOI

EISSN

1523-5866

Publication Date

May 15, 2025

Volume

27

Issue

4

Start / End Page

1102 / 1115

Location

England

Related Subject Headings

  • Young Adult
  • Survival Rate
  • Prognosis
  • Oncology & Carcinogenesis
  • Middle Aged
  • Male
  • Magnetic Resonance Imaging
  • Machine Learning
  • Humans
  • Glioblastoma