
A Three-Dimensional Tumor Growth Model and Its Boundary Instability
In this paper, we investigate the instability of growing tumors by employing both analytical and numerical techniques to validate previous results and extend the analytical findings presented in a prior study by Feng et al. (Z Angew Math Phys 74:107, 2023). Building upon the insights derived from the analytical reconstruction of key results in the aforementioned work in one dimension and two dimensions, we extend our analysis to three dimensions. Specifically, we focus on the determination of boundary instability using perturbation and asymptotic analysis along with spherical harmonics. Additionally, we have validated our analytical results in a two-dimensional (2D) framework by implementing the Alternating Direction Implicit (ADI) method. Our primary focus has been on ensuring that the numerical simulation of the propagation speed aligns accurately with the analytical findings. Furthermore, we have matched the simulated boundary stability with the analytical predictions derived from the evolution function, which will be defined in subsequent sections of our paper. This alignment is essential for accurately determining the stability or instability of tumor boundaries.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Citation
