Skip to main content

Compactness of Conformal Metrics with Integral Bounds on Ricci Curvature

Publication ,  Journal Article
Dong, C; Li, Y
Published in: Pacific Journal of Mathematics
January 1, 2022

Let (M, g) be a closed Riemannian manifold with dimension n > 2, and (Equation Presented) be a noncollapsing conformal metric sequence with fixed volume. We prove that { loguk is compact in C0,αif ∥Ric(gk)∥LP(M,gk)is bounded, where (Equation Presented).

Duke Scholars

Published In

Pacific Journal of Mathematics

DOI

EISSN

1945-5844

ISSN

0030-8730

Publication Date

January 1, 2022

Volume

316

Issue

1

Start / End Page

65 / 79

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dong, C., & Li, Y. (2022). Compactness of Conformal Metrics with Integral Bounds on Ricci Curvature. Pacific Journal of Mathematics, 316(1), 65–79. https://doi.org/10.2140/pjm.2022.316.65
Dong, C., and Y. Li. “Compactness of Conformal Metrics with Integral Bounds on Ricci Curvature.” Pacific Journal of Mathematics 316, no. 1 (January 1, 2022): 65–79. https://doi.org/10.2140/pjm.2022.316.65.
Dong C, Li Y. Compactness of Conformal Metrics with Integral Bounds on Ricci Curvature. Pacific Journal of Mathematics. 2022 Jan 1;316(1):65–79.
Dong, C., and Y. Li. “Compactness of Conformal Metrics with Integral Bounds on Ricci Curvature.” Pacific Journal of Mathematics, vol. 316, no. 1, Jan. 2022, pp. 65–79. Scopus, doi:10.2140/pjm.2022.316.65.
Dong C, Li Y. Compactness of Conformal Metrics with Integral Bounds on Ricci Curvature. Pacific Journal of Mathematics. 2022 Jan 1;316(1):65–79.

Published In

Pacific Journal of Mathematics

DOI

EISSN

1945-5844

ISSN

0030-8730

Publication Date

January 1, 2022

Volume

316

Issue

1

Start / End Page

65 / 79

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics