Skip to main content
Journal cover image

Structural insights into RNA cleavage by PIWI Argonaute.

Publication ,  Journal Article
Li, Z; Xu, Q; Zhong, J; Zhang, Y; Zhang, T; Ying, X; Lu, X; Li, X; Wan, L; Xue, J; Huang, J; Zhen, Y; Zhang, Z; Wu, J; Shen, E-Z
Published in: Nature
March 2025

Argonaute proteins are categorized into AGO and PIWI clades. Across most animal species, AGO-clade proteins are widely expressed in various cell types, and regulate normal gene expression1. By contrast, PIWI-clade proteins predominantly function during gametogenesis to suppress transposons and ensure fertility1,2. Both clades use nucleic acid guides for target recognition by means of base pairing, crucial for initiating target silencing, often through direct cleavage. AGO-clade proteins use a narrow channel to secure a tight guide-target interaction3. By contrast, PIWI proteins feature a wider channel that potentially allows mismatches during pairing, broadening target silencing capability4,5. However, the mechanism of PIWI-mediated target cleavage remains unclear. Here we demonstrate that after target binding, PIWI proteins undergo a conformational change from an 'open' state to a 'locked' state, facilitating base pairing and enhancing target cleavage efficiency. This transition involves narrowing of the binding channel and repositioning of the PIWI-interacting RNA-target duplex towards the MID-PIWI lobe, establishing extensive contacts for duplex stabilization. During this transition, we also identify an intermediate 'comma-shaped' conformation, which might recruit GTSF1, a known auxiliary protein that enhances PIWI cleavage activity6. GTSF1 facilitates the transition to the locked state by linking the PIWI domain to the RNA duplex, thereby expediting the conformational change critical for efficient target cleavage. These findings explain the molecular mechanisms underlying PIWI-PIWI-interacting RNA complex function in target RNA cleavage, providing insights into how dynamic conformational changes from PIWI proteins coordinate cofactors to safeguard gametogenesis.

Duke Scholars

Published In

Nature

DOI

EISSN

1476-4687

Publication Date

March 2025

Volume

639

Issue

8053

Start / End Page

250 / 259

Location

England

Related Subject Headings

  • RNA, Small Interfering
  • RNA Cleavage
  • Protein Binding
  • Models, Molecular
  • General Science & Technology
  • Cryoelectron Microscopy
  • Caenorhabditis elegans Proteins
  • Caenorhabditis elegans
  • Base Pairing
  • Argonaute Proteins
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Li, Z., Xu, Q., Zhong, J., Zhang, Y., Zhang, T., Ying, X., … Shen, E.-Z. (2025). Structural insights into RNA cleavage by PIWI Argonaute. Nature, 639(8053), 250–259. https://doi.org/10.1038/s41586-024-08438-1
Li, Zhiqing, Qikui Xu, Jing Zhong, Yan Zhang, Tianxiang Zhang, Xiaoze Ying, Xiaoli Lu, et al. “Structural insights into RNA cleavage by PIWI Argonaute.Nature 639, no. 8053 (March 2025): 250–59. https://doi.org/10.1038/s41586-024-08438-1.
Li Z, Xu Q, Zhong J, Zhang Y, Zhang T, Ying X, et al. Structural insights into RNA cleavage by PIWI Argonaute. Nature. 2025 Mar;639(8053):250–9.
Li, Zhiqing, et al. “Structural insights into RNA cleavage by PIWI Argonaute.Nature, vol. 639, no. 8053, Mar. 2025, pp. 250–59. Pubmed, doi:10.1038/s41586-024-08438-1.
Li Z, Xu Q, Zhong J, Zhang Y, Zhang T, Ying X, Lu X, Li X, Wan L, Xue J, Huang J, Zhen Y, Zhang Z, Wu J, Shen E-Z. Structural insights into RNA cleavage by PIWI Argonaute. Nature. 2025 Mar;639(8053):250–259.
Journal cover image

Published In

Nature

DOI

EISSN

1476-4687

Publication Date

March 2025

Volume

639

Issue

8053

Start / End Page

250 / 259

Location

England

Related Subject Headings

  • RNA, Small Interfering
  • RNA Cleavage
  • Protein Binding
  • Models, Molecular
  • General Science & Technology
  • Cryoelectron Microscopy
  • Caenorhabditis elegans Proteins
  • Caenorhabditis elegans
  • Base Pairing
  • Argonaute Proteins