Direct Mass Measurements of Neutron-Rich Zinc and Gallium Isotopes: An Investigation of the Formation of the First r-Process Peak.
The prediction of isotopic abundances resulting from the rapid neutron capture process (r process) requires high-precision mass measurements. Using TITAN's on-line time-of-flight spectrometer, first time mass measurements are performed for ^{83}Zn and ^{86}Ga. These measurements reduced uncertainties, and are used to calculate isotopic abundances near the first r-process abundance peak using astrophysical conditions present during a binary neutron star (BNS) merger. Good agreement in abundance across a range of trajectories is found when comparing to several metal-poor stars while also strongly deviating from the solar r-process pattern. These findings point to a high degree of sensitivity to the electron fraction of a BNS merger on the final elemental abundance pattern for certain elements near the first r-process peak while others display universality. We find that small changes in electron fraction can produce distinct abundance patterns that match those of metal-poor stars with different classifications.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences