Skip to main content

PARQO: Penalty-Aware Robust Plan Selection in Query Optimization

Publication ,  Conference
Xiu, H; Agarwal, PK; Yang, J
Published in: Proceedings of the VLDB Endowment
January 1, 2024

The effectiveness of a query optimizer relies on the accuracy of selectivity estimates. The execution plan generated by the optimizer can be extremely poor in reality due to uncertainty in these estimates. This paper presents PARQO (Penalty-Aware Robust Plan Selection in Query Optimization), a novel system where users can define powerful robustness metrics that assess the expected penalty of a plan with respect to true optimal plans under uncertain selectivity estimates. PARQO uses workload-informed profiling to build error models, and employs principled sensitivity analysis techniques to identify human-interpretable selectivity dimensions with the largest impact on penalty. Experiments on three benchmarks demonstrate that PARQO finds robust, performant plans, and enables efficient and effective parametric optimization.

Duke Scholars

Published In

Proceedings of the VLDB Endowment

DOI

EISSN

2150-8097

Publication Date

January 1, 2024

Volume

17

Issue

13

Start / End Page

4627 / 4640

Related Subject Headings

  • 4605 Data management and data science
  • 0807 Library and Information Studies
  • 0806 Information Systems
  • 0802 Computation Theory and Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Xiu, H., Agarwal, P. K., & Yang, J. (2024). PARQO: Penalty-Aware Robust Plan Selection in Query Optimization. In Proceedings of the VLDB Endowment (Vol. 17, pp. 4627–4640). https://doi.org/10.14778/3704965.3704971
Xiu, H., P. K. Agarwal, and J. Yang. “PARQO: Penalty-Aware Robust Plan Selection in Query Optimization.” In Proceedings of the VLDB Endowment, 17:4627–40, 2024. https://doi.org/10.14778/3704965.3704971.
Xiu H, Agarwal PK, Yang J. PARQO: Penalty-Aware Robust Plan Selection in Query Optimization. In: Proceedings of the VLDB Endowment. 2024. p. 4627–40.
Xiu, H., et al. “PARQO: Penalty-Aware Robust Plan Selection in Query Optimization.” Proceedings of the VLDB Endowment, vol. 17, no. 13, 2024, pp. 4627–40. Scopus, doi:10.14778/3704965.3704971.
Xiu H, Agarwal PK, Yang J. PARQO: Penalty-Aware Robust Plan Selection in Query Optimization. Proceedings of the VLDB Endowment. 2024. p. 4627–4640.

Published In

Proceedings of the VLDB Endowment

DOI

EISSN

2150-8097

Publication Date

January 1, 2024

Volume

17

Issue

13

Start / End Page

4627 / 4640

Related Subject Headings

  • 4605 Data management and data science
  • 0807 Library and Information Studies
  • 0806 Information Systems
  • 0802 Computation Theory and Mathematics