PARQO: Penalty-Aware Robust Plan Selection in Query Optimization
The effectiveness of a query optimizer relies on the accuracy of selectivity estimates. The execution plan generated by the optimizer can be extremely poor in reality due to uncertainty in these estimates. This paper presents PARQO (Penalty-Aware Robust Plan Selection in Query Optimization), a novel system where users can define powerful robustness metrics that assess the expected penalty of a plan with respect to true optimal plans under uncertain selectivity estimates. PARQO uses workload-informed profiling to build error models, and employs principled sensitivity analysis techniques to identify human-interpretable selectivity dimensions with the largest impact on penalty. Experiments on three benchmarks demonstrate that PARQO finds robust, performant plans, and enables efficient and effective parametric optimization.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics