Skip to main content
Journal cover image

A deep learning strategy to identify cell types across species from high-density extracellular recordings.

Publication ,  Journal Article
Beau, M; Herzfeld, DJ; Naveros, F; Hemelt, ME; D'Agostino, F; Oostland, M; Sánchez-López, A; Chung, YY; Maibach, M; Kyranakis, S; Stabb, HN ...
Published in: Cell
April 17, 2025

High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Cell

DOI

EISSN

1097-4172

Publication Date

April 17, 2025

Volume

188

Issue

8

Start / End Page

2218 / 2234.e22

Location

United States

Related Subject Headings

  • Rats
  • Purkinje Cells
  • Optogenetics
  • Neurons
  • Mice, Inbred C57BL
  • Mice
  • Male
  • Interneurons
  • Developmental Biology
  • Deep Learning
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Beau, M., Herzfeld, D. J., Naveros, F., Hemelt, M. E., D’Agostino, F., Oostland, M., … Medina, J. F. (2025). A deep learning strategy to identify cell types across species from high-density extracellular recordings. Cell, 188(8), 2218-2234.e22. https://doi.org/10.1016/j.cell.2025.01.041
Beau, Maxime, David J. Herzfeld, Francisco Naveros, Marie E. Hemelt, Federico D’Agostino, Marlies Oostland, Alvaro Sánchez-López, et al. “A deep learning strategy to identify cell types across species from high-density extracellular recordings.Cell 188, no. 8 (April 17, 2025): 2218-2234.e22. https://doi.org/10.1016/j.cell.2025.01.041.
Beau M, Herzfeld DJ, Naveros F, Hemelt ME, D’Agostino F, Oostland M, et al. A deep learning strategy to identify cell types across species from high-density extracellular recordings. Cell. 2025 Apr 17;188(8):2218-2234.e22.
Beau, Maxime, et al. “A deep learning strategy to identify cell types across species from high-density extracellular recordings.Cell, vol. 188, no. 8, Apr. 2025, pp. 2218-2234.e22. Pubmed, doi:10.1016/j.cell.2025.01.041.
Beau M, Herzfeld DJ, Naveros F, Hemelt ME, D’Agostino F, Oostland M, Sánchez-López A, Chung YY, Maibach M, Kyranakis S, Stabb HN, Martínez Lopera MG, Lajko A, Zedler M, Ohmae S, Hall NJ, Clark BA, Cohen D, Lisberger SG, Kostadinov D, Hull C, Häusser M, Medina JF. A deep learning strategy to identify cell types across species from high-density extracellular recordings. Cell. 2025 Apr 17;188(8):2218-2234.e22.
Journal cover image

Published In

Cell

DOI

EISSN

1097-4172

Publication Date

April 17, 2025

Volume

188

Issue

8

Start / End Page

2218 / 2234.e22

Location

United States

Related Subject Headings

  • Rats
  • Purkinje Cells
  • Optogenetics
  • Neurons
  • Mice, Inbred C57BL
  • Mice
  • Male
  • Interneurons
  • Developmental Biology
  • Deep Learning