Rapid self-strengthening in double-network hydrogels triggered by bond scission.
The scission of chemical bonds in materials can lead to catastrophic failure, with weak bonds typically undermining the materials' strength. Here we demonstrate how weak bonds can be leveraged to achieve self-strengthening in polymer network materials. These weak sacrificial bonds trigger mechanochemical reactions, forming new networks rapidly enough to reinforce the material during deformation and significantly improve crack resistance. This rapid strengthening exhibits strong rate dependence, dictated by the interplay between bond breaking and the kinetics of force-induced network formation. As the network formation is generally applicable to diverse monomers and crosslinkers with different kinetics, a wide range of mechanical properties can be obtained. These findings may inspire the design of tough polymer materials with on-demand, rate-dependent mechanical behaviours through mechanochemistry, broadening their applications across various fields.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology