Interpretable Generalized Additive Models for Datasets with Missing Values
Many important datasets contain samples that are missing one or more feature values. Maintaining the interpretability of machine learning models in the presence of such missing data is challenging. Singly or multiply imputing missing values complicates the model's mapping from features to labels. On the other hand, reasoning on indicator variables that represent missingness introduces a potentially large number of additional terms, sacrificing sparsity. We solve these problems with M-GAM, a sparse, generalized, additive modeling approach that incorporates missingness indicators and their interaction terms while maintaining sparsity through ℓ
Duke Scholars
Published In
ISSN
Publication Date
Volume
Related Subject Headings
- 4611 Machine learning
- 1702 Cognitive Sciences
- 1701 Psychology
Citation
Published In
ISSN
Publication Date
Volume
Related Subject Headings
- 4611 Machine learning
- 1702 Cognitive Sciences
- 1701 Psychology