Skip to main content
Journal cover image

The arc length variational formula on the exponential manifold

Publication ,  Journal Article
Zhang, F; Sun, H; Jiu, L; Peng, L
Published in: Mathematica Slovaca
October 1, 2013

In this paper, we mainly consider the first and second arc length variational problems on the exponential statistical manifold, and give the variational formulae.

Duke Scholars

Published In

Mathematica Slovaca

DOI

EISSN

1337-2211

ISSN

0139-9918

Publication Date

October 1, 2013

Volume

63

Issue

5

Start / End Page

1101 / 1112

Publisher

Walter de Gruyter GmbH

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhang, F., Sun, H., Jiu, L., & Peng, L. (2013). The arc length variational formula on the exponential manifold. Mathematica Slovaca, 63(5), 1101–1112. https://doi.org/10.2478/s12175-013-0158-6
Zhang, Fengyun, Huafei Sun, Lin Jiu, and Linyu Peng. “The arc length variational formula on the exponential manifold.” Mathematica Slovaca 63, no. 5 (October 1, 2013): 1101–12. https://doi.org/10.2478/s12175-013-0158-6.
Zhang F, Sun H, Jiu L, Peng L. The arc length variational formula on the exponential manifold. Mathematica Slovaca. 2013 Oct 1;63(5):1101–12.
Zhang, Fengyun, et al. “The arc length variational formula on the exponential manifold.” Mathematica Slovaca, vol. 63, no. 5, Walter de Gruyter GmbH, Oct. 2013, pp. 1101–12. Crossref, doi:10.2478/s12175-013-0158-6.
Zhang F, Sun H, Jiu L, Peng L. The arc length variational formula on the exponential manifold. Mathematica Slovaca. Walter de Gruyter GmbH; 2013 Oct 1;63(5):1101–1112.
Journal cover image

Published In

Mathematica Slovaca

DOI

EISSN

1337-2211

ISSN

0139-9918

Publication Date

October 1, 2013

Volume

63

Issue

5

Start / End Page

1101 / 1112

Publisher

Walter de Gruyter GmbH

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics