Skip to main content

Uniqueness and root-Lipschitz regularity for a degenerate heat equation

Publication ,  Journal Article
Dunlap, A; Graham, C
Published in: SIAM Journal on Mathematical Analysis
January 1, 2025

We consider nonnegative solutions of the quasilinear heat equation in one dimension. Our solutions may vanish and may be unbounded. The equation is then degenerate, and weak solutions are generally nonunique. We introduce a notion of strong solution that ensures uniqueness. For suitable initial data, we prove a lower bound on the time for which a strong solution u exists and remains globally Lipschitz in space. In a companion paper, we show that this condition is important in the study of two-dimensional nonlinear stochastic heat equations. (Formula presented)

Duke Scholars

Published In

SIAM Journal on Mathematical Analysis

DOI

EISSN

1095-7154

ISSN

0036-1410

Publication Date

January 1, 2025

Volume

57

Issue

2

Start / End Page

1866 / 1891

Related Subject Headings

  • Applied Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dunlap, A., & Graham, C. (2025). Uniqueness and root-Lipschitz regularity for a degenerate heat equation. SIAM Journal on Mathematical Analysis, 57(2), 1866–1891. https://doi.org/10.1137/23M1596260
Dunlap, A., and C. Graham. “Uniqueness and root-Lipschitz regularity for a degenerate heat equation.” SIAM Journal on Mathematical Analysis 57, no. 2 (January 1, 2025): 1866–91. https://doi.org/10.1137/23M1596260.
Dunlap A, Graham C. Uniqueness and root-Lipschitz regularity for a degenerate heat equation. SIAM Journal on Mathematical Analysis. 2025 Jan 1;57(2):1866–91.
Dunlap, A., and C. Graham. “Uniqueness and root-Lipschitz regularity for a degenerate heat equation.” SIAM Journal on Mathematical Analysis, vol. 57, no. 2, Jan. 2025, pp. 1866–91. Manual, doi:10.1137/23M1596260.
Dunlap A, Graham C. Uniqueness and root-Lipschitz regularity for a degenerate heat equation. SIAM Journal on Mathematical Analysis. 2025 Jan 1;57(2):1866–1891.

Published In

SIAM Journal on Mathematical Analysis

DOI

EISSN

1095-7154

ISSN

0036-1410

Publication Date

January 1, 2025

Volume

57

Issue

2

Start / End Page

1866 / 1891

Related Subject Headings

  • Applied Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics