LOW-RANK LONGITUDINAL FACTOR REGRESSION WITH APPLICATION TO CHEMICAL MIXTURES.
Developmental epidemiology commonly focuses on assessing the association between multiple early life exposures and childhood health. Statistical analyses of data from such studies focus on inferring the contributions of individual exposures, while also characterizing time-varying and interacting effects. Such inferences are made more challenging by correlations among exposures, nonlinearity, and the curse of dimensionality. Motivated by studying the effects of prenatal bisphenol A (BPA) and phthalate exposures on glucose metabolism in adolescence using data from the ELEMENT study, we propose a low-rank longitudinal factor regression (LowFR) model for tractable inference on flexible longitudinal exposure effects. LowFR handles highly-correlated exposures using a Bayesian dynamic factor model, which is fit jointly with a health outcome via a novel factor regression approach. The model collapses on simpler and intuitive submodels when appropriate, while expanding to allow considerable flexibility in time-varying and interaction effects when supported by the data. After demonstrating LowFR's effectiveness in simulations, we use it to analyze the ELEMENT data and find that diethyl and dibutyl phthalate metabolite levels in trimesters 1 and 2 are associated with altered glucose metabolism in adolescence.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 1403 Econometrics
- 0104 Statistics