From the Ground to Space: Using Solar-Induced Chlorophyll Fluorescence to Estimate Crop Productivity
Timely and accurate monitoring of crops is essential for food security. Here, we examine how well solar-induced chlorophyll fluorescence (SIF) can inform crop productivity across the United States. Based on tower-level observations and process-based modeling, we find highly linear gross primary production (GPP):SIF relationships for C4 crops, while C3 crops show some saturation of GPP at high light when SIF continues to increase. C4 crops yield higher GPP:SIF ratios (30–50%) primarily because SIF is most sensitive to the light reactions (does not account for photorespiration). Scaling to the satellite, we compare SIF from the TROPOspheric Monitoring Instrument (TROPOMI) against tower-derived GPP and county-level crop statistics. Temporally, TROPOMI SIF strongly agrees with GPP observations upscaled across a corn and soybean dominated cropland (R2 = 0.89). Spatially, county-level TROPOMI SIF correlates with crop productivity (R2 = 0.72; 0.86 when accounting for planted area and C3/C4 contributions), highlighting the potential of SIF for reliable crop monitoring.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Meteorology & Atmospheric Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Meteorology & Atmospheric Sciences