Skip to main content

Data and scripts from: A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from UAS

Publication ,  Dataset
Dale, J; Bierlich, KC; Schick, RS; Johnston, DW; Goldbogen, JA; Friedlaender, AS; Hewitt, J
July 6, 2021

Duke Scholars

DOI

Publication Date

July 6, 2021
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dale, J., Bierlich, K. C., Schick, R. S., Johnston, D. W., Goldbogen, J. A., Friedlaender, A. S., & Hewitt, J. (2021). Data and scripts from: A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from UAS. https://doi.org/10.7924/r4sj1jj6s
Dale, J., K. C. Bierlich, R. S. Schick, David W. Johnston, J. A. Goldbogen, A. S. Friedlaender, and J. Hewitt. “Data and scripts from: A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from UAS,” July 6, 2021. https://doi.org/10.7924/r4sj1jj6s.
Dale J, Bierlich KC, Schick RS, Johnston DW, Goldbogen JA, Friedlaender AS, et al. Data and scripts from: A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from UAS. 2021.
Dale J, Bierlich KC, Schick RS, Johnston DW, Goldbogen JA, Friedlaender AS, Hewitt J. Data and scripts from: A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from UAS. 2021.

DOI

Publication Date

July 6, 2021