Groundwater Level Response to Precipitation and Potential Climate Trends
Stream–aquifer interactions, as well as surface water/groundwater interactions within wetlands, require a solution of complex partial differential equations of flow and contaminant transport, namely a deterministic approach. Groundwater level (GWL) responses to precipitation, particularly for extreme value events such as annual maxima, require a probabilistic approach to evaluate potential climate trends. It is commonly assumed that the distribution of annual maxima series (AMS) precipitation follows the generalized extreme value distribution (GEV). If the extremes of the data are nonstationary, it is possible to incorporate this knowledge into the parameters of the GEV. This approach is also applied to the computed annual maxima of daily groundwater level data. Nonstationary versus stationary time series for both groundwater level and AMS 24-h duration precipitation are compared for National Oceanic and Atmospheric Administration (NOAA) stations with nearby wells. Predicted extreme value analysis (EVA) climate trends for wells penetrating limestone aquifers directly beneath rainfall monitoring stations at major airports indicate similar GWL response. Groundwater levels at wells located near coastlines are partially impacted by sea level rise. An extreme value analysis of the GWL is shown to be a useful tool to confirm hydrologic connections and long-term climate trends.