Skip to main content

Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis.

Publication ,  Journal Article
Steele, N; Morey, RA; Hussain, A; Russell, C; Suarez-Jimenez, B; Pozzi, E; Jameei, H; Schmaal, L; Veer, IM; Waller, L; Jahanshad, N; Olff, M ...
Published in: bioRxiv
June 17, 2025

The increasing scale and complexity of neuroimaging datasets aggregated from multiple study sites present substantial analytic challenges, as existing statistical analysis tools struggle to handle missing voxel-data, suffer from limited computational speed and inefficient memory allocation, and are restricted in the types of statistical designs they are able to model. We introduce Image-Based Meta- & Mega-Analysis (IBMMA), a novel software package implemented in R and Python that provides a unified framework for analyzing diverse neuroimaging features, efficiently handles large-scale datasets through parallel processing, offers flexible statistical modeling options, and properly manages missing voxel-data commonly encountered in multi-site studies. IBMMA produced stronger effect sizes and revealed findings in brain regions that traditional software overlooked due to missing voxel-data resulting in gaps in brain coverage. IBMMA has the potential to accelerate discoveries in neuroscience and enhance the clinical utility of neuroimaging findings.

Duke Scholars

Published In

bioRxiv

DOI

EISSN

2692-8205

Publication Date

June 17, 2025

Location

United States
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Steele, N., Morey, R. A., Hussain, A., Russell, C., Suarez-Jimenez, B., Pozzi, E., … Sun, D. (2025). Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis. BioRxiv. https://doi.org/10.1101/2025.06.16.657725
Steele, Nick, Rajendra A. Morey, Ahmed Hussain, Courtney Russell, Benjamin Suarez-Jimenez, Elena Pozzi, Hadis Jameei, et al. “Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis.BioRxiv, June 17, 2025. https://doi.org/10.1101/2025.06.16.657725.
Steele N, Morey RA, Hussain A, Russell C, Suarez-Jimenez B, Pozzi E, et al. Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis. bioRxiv. 2025 Jun 17;
Steele, Nick, et al. “Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis.BioRxiv, June 2025. Pubmed, doi:10.1101/2025.06.16.657725.
Steele N, Morey RA, Hussain A, Russell C, Suarez-Jimenez B, Pozzi E, Jameei H, Schmaal L, Veer IM, Waller L, Jahanshad N, Thomopoulos SI, Salminen LE, Olff M, Frijling JL, Veltman DJ, Koch SBJ, Nawijn L, van Zuiden M, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Neria Y, Zhu X, Ravid O, Zilcha-Mano S, Lazarov A, Huggins AA, Stevens JS, Ressler K, Jovanovic T, van Rooij SJH, Fani N, Mueller SC, Hudson AR, Daniels JK, Sierk A, Manthey A, Walter H, van der Wee NJA, van der Werff SJA, Vermeiren RRJM, Schmahl C, Herzog JI, Rektor I, Říha P, Kaufman ML, Lebois LAM, Baker JT, Rosso IM, Olson EA, King A, Liberzon I, Angstadt M, Davenport ND, Disner SG, Sponheim SR, Straube T, Hofmann D, Lu G, Qi R, Wang X, Kunch A, Xie H, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce SE, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson C, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Elman J, Panizzon M, Franz CE, Lyons MJ, Kremen WS, Feola B, Blackford JU, Olatunji BO, May G, Nelson SM, Gordon EM, Abdallah CG, Lanius R, Densmore M, Théberge J, Neufeld RWJ, Thompson PM, Sun D. Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis. bioRxiv. 2025 Jun 17;

Published In

bioRxiv

DOI

EISSN

2692-8205

Publication Date

June 17, 2025

Location

United States