Strong (δ, n)-Complements for Semi-Stable Morphisms
Publication
, Journal Article
Filipazzi, S; Moraga, J
Published in: Documenta Mathematica
January 1, 2020
We prove the boundedness of global strong (δ, n)- complements for generalized ∈-log canonical pairs of Fano-type. We also prove some partial results towards boundedness of local strong (δ, n)-complements for semi-stable morphisms. As applications, we prove an effective generalized canonical bundle formula for generalized klt pairs and an effective generalized adjunction formula for exceptional generalized log canonical centers. Moreover, we prove that the existence of strong (δ, n)-complements implies a conjecture due to McKernan concerning the singularities of the base of a Mori fiber space.
Duke Scholars
Published In
Documenta Mathematica
DOI
EISSN
1431-0643
ISSN
1431-0635
Publication Date
January 1, 2020
Volume
25
Start / End Page
1953 / 1996
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Filipazzi, S., & Moraga, J. (2020). Strong (δ, n)-Complements for Semi-Stable Morphisms. Documenta Mathematica, 25, 1953–1996. https://doi.org/10.25537/dm.2020v25.1953-1996
Filipazzi, S., and J. Moraga. “Strong (δ, n)-Complements for Semi-Stable Morphisms.” Documenta Mathematica 25 (January 1, 2020): 1953–96. https://doi.org/10.25537/dm.2020v25.1953-1996.
Filipazzi S, Moraga J. Strong (δ, n)-Complements for Semi-Stable Morphisms. Documenta Mathematica. 2020 Jan 1;25:1953–96.
Filipazzi, S., and J. Moraga. “Strong (δ, n)-Complements for Semi-Stable Morphisms.” Documenta Mathematica, vol. 25, Jan. 2020, pp. 1953–96. Scopus, doi:10.25537/dm.2020v25.1953-1996.
Filipazzi S, Moraga J. Strong (δ, n)-Complements for Semi-Stable Morphisms. Documenta Mathematica. 2020 Jan 1;25:1953–1996.
Published In
Documenta Mathematica
DOI
EISSN
1431-0643
ISSN
1431-0635
Publication Date
January 1, 2020
Volume
25
Start / End Page
1953 / 1996
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics