Skip to main content

Strong (δ, n)-Complements for Semi-Stable Morphisms

Publication ,  Journal Article
Filipazzi, S; Moraga, J
Published in: Documenta Mathematica
January 1, 2020

We prove the boundedness of global strong (δ, n)- complements for generalized ∈-log canonical pairs of Fano-type. We also prove some partial results towards boundedness of local strong (δ, n)-complements for semi-stable morphisms. As applications, we prove an effective generalized canonical bundle formula for generalized klt pairs and an effective generalized adjunction formula for exceptional generalized log canonical centers. Moreover, we prove that the existence of strong (δ, n)-complements implies a conjecture due to McKernan concerning the singularities of the base of a Mori fiber space.

Duke Scholars

Published In

Documenta Mathematica

DOI

EISSN

1431-0643

ISSN

1431-0635

Publication Date

January 1, 2020

Volume

25

Start / End Page

1953 / 1996

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Filipazzi, S., & Moraga, J. (2020). Strong (δ, n)-Complements for Semi-Stable Morphisms. Documenta Mathematica, 25, 1953–1996. https://doi.org/10.25537/dm.2020v25.1953-1996
Filipazzi, S., and J. Moraga. “Strong (δ, n)-Complements for Semi-Stable Morphisms.” Documenta Mathematica 25 (January 1, 2020): 1953–96. https://doi.org/10.25537/dm.2020v25.1953-1996.
Filipazzi S, Moraga J. Strong (δ, n)-Complements for Semi-Stable Morphisms. Documenta Mathematica. 2020 Jan 1;25:1953–96.
Filipazzi, S., and J. Moraga. “Strong (δ, n)-Complements for Semi-Stable Morphisms.” Documenta Mathematica, vol. 25, Jan. 2020, pp. 1953–96. Scopus, doi:10.25537/dm.2020v25.1953-1996.
Filipazzi S, Moraga J. Strong (δ, n)-Complements for Semi-Stable Morphisms. Documenta Mathematica. 2020 Jan 1;25:1953–1996.

Published In

Documenta Mathematica

DOI

EISSN

1431-0643

ISSN

1431-0635

Publication Date

January 1, 2020

Volume

25

Start / End Page

1953 / 1996

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics