Skip to main content
Journal cover image

Generic vanishing fails for surfaces in positive characteristic

Publication ,  Journal Article
Filipazzi, S
Published in: Bolletino Dell Unione Matematica Italiana
June 1, 2018

We show that there exist smooth surfaces violating Generic Vanishing in any characteristic p≥ 3. As a corollary, we recover a result of Hacon and Kovács, producing counterexamples to Generic Vanishing in dimension 3 and higher.

Duke Scholars

Published In

Bolletino Dell Unione Matematica Italiana

DOI

EISSN

2198-2759

ISSN

1972-6724

Publication Date

June 1, 2018

Volume

11

Issue

2

Start / End Page

179 / 189

Related Subject Headings

  • 4901 Applied mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Filipazzi, S. (2018). Generic vanishing fails for surfaces in positive characteristic. Bolletino Dell Unione Matematica Italiana, 11(2), 179–189. https://doi.org/10.1007/s40574-017-0120-6
Filipazzi, S. “Generic vanishing fails for surfaces in positive characteristic.” Bolletino Dell Unione Matematica Italiana 11, no. 2 (June 1, 2018): 179–89. https://doi.org/10.1007/s40574-017-0120-6.
Filipazzi S. Generic vanishing fails for surfaces in positive characteristic. Bolletino Dell Unione Matematica Italiana. 2018 Jun 1;11(2):179–89.
Filipazzi, S. “Generic vanishing fails for surfaces in positive characteristic.” Bolletino Dell Unione Matematica Italiana, vol. 11, no. 2, June 2018, pp. 179–89. Scopus, doi:10.1007/s40574-017-0120-6.
Filipazzi S. Generic vanishing fails for surfaces in positive characteristic. Bolletino Dell Unione Matematica Italiana. 2018 Jun 1;11(2):179–189.
Journal cover image

Published In

Bolletino Dell Unione Matematica Italiana

DOI

EISSN

2198-2759

ISSN

1972-6724

Publication Date

June 1, 2018

Volume

11

Issue

2

Start / End Page

179 / 189

Related Subject Headings

  • 4901 Applied mathematics