Necas Center Series
Anisotropic Mesh Adaptation Method, hp-Variant
Publication
, Chapter
Dolejší, V; May, G
January 1, 2022
We present an hp-variant of the anisotropic mesh adaptation methods discussed so far. That is, contrary to our discussion in Chap. 5, we now let the polynomial degree of approximation vary from mesh element to mesh element. This is essential in situations where the exact solution contains local singularities but is very smooth in other parts of the computational domain. The main concern here is the extension of the continuous mesh and error models to the hp-variant. However, as the analytical solution of the pertinent optimization problem is not as straightforward as in the h-variant, we derive a semi-analytical iterative approach.
Duke Scholars
DOI
Publication Date
January 1, 2022
Volume
Part F1671
Start / End Page
133 / 154
Citation
APA
Chicago
ICMJE
MLA
NLM
Dolejší, V., & May, G. (2022). Anisotropic Mesh Adaptation Method, hp-Variant. In Necas Center Series (Vol. Part F1671, pp. 133–154). https://doi.org/10.1007/978-3-031-04279-9_6
Dolejší, V., and G. May. “Anisotropic Mesh Adaptation Method, hp-Variant.” In Necas Center Series, Part F1671:133–54, 2022. https://doi.org/10.1007/978-3-031-04279-9_6.
Dolejší V, May G. Anisotropic Mesh Adaptation Method, hp-Variant. In: Necas Center Series. 2022. p. 133–54.
Dolejší, V., and G. May. “Anisotropic Mesh Adaptation Method, hp-Variant.” Necas Center Series, vol. Part F1671, 2022, pp. 133–54. Scopus, doi:10.1007/978-3-031-04279-9_6.
Dolejší V, May G. Anisotropic Mesh Adaptation Method, hp-Variant. Necas Center Series. 2022. p. 133–154.
DOI
Publication Date
January 1, 2022
Volume
Part F1671
Start / End Page
133 / 154