Skip to main content
Necas Center Series

Interpolation Error Estimates for Two Dimensions

Publication ,  Chapter
Dolejší, V; May, G
January 1, 2022

We formulate the fundamental theoretical results which are later employed for the anisotropic mesh adaptation method. First, we recall the geometry terms of a mesh triangle K discussed in the previous chapter. Further, we define an interpolation of a sufficiently smooth function u on element K as a polynomial function having the same value and partial derivatives as the original function at the barycenter of K. Moreover, we derive estimates of the difference between u and its interpolation (=interpolation error estimates) in several norms. These estimates take into account the geometry of mesh element K. Finally, we derive the optimal shape of a triangle with given barycenter, minimizing the interpolation error estimates.

Duke Scholars

DOI

Publication Date

January 1, 2022

Volume

Part F1671

Start / End Page

43 / 76
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dolejší, V., & May, G. (2022). Interpolation Error Estimates for Two Dimensions. In Necas Center Series (Vol. Part F1671, pp. 43–76). https://doi.org/10.1007/978-3-031-04279-9_3
Dolejší, V., and G. May. “Interpolation Error Estimates for Two Dimensions.” In Necas Center Series, Part F1671:43–76, 2022. https://doi.org/10.1007/978-3-031-04279-9_3.
Dolejší V, May G. Interpolation Error Estimates for Two Dimensions. In: Necas Center Series. 2022. p. 43–76.
Dolejší, V., and G. May. “Interpolation Error Estimates for Two Dimensions.” Necas Center Series, vol. Part F1671, 2022, pp. 43–76. Scopus, doi:10.1007/978-3-031-04279-9_3.
Dolejší V, May G. Interpolation Error Estimates for Two Dimensions. Necas Center Series. 2022. p. 43–76.

DOI

Publication Date

January 1, 2022

Volume

Part F1671

Start / End Page

43 / 76