A continuous hp-mesh model for discontinuous Petrov-Galerkin finite element schemes with optimal test functions
We present an anisotropic hp-mesh adaptation strategy using a continuous mesh model for discontinuous Petrov-Galerkin (DPG) finite element schemes with optimal test functions, extending our previous work [1] on h-adaptation. The proposed strategy utilizes the built-in residual-based error estimator of the DPG discretization to compute both the polynomial distribution and the anisotropy of the mesh elements. In order to predict the optimal order of approximation, we solve local problems on element patches, thus making these computations highly parallelizable. The continuous mesh model is formulated either with respect to the error in the solution, measured in a suitable norm, or with respect to certain admissible target functionals. We demonstrate the performance of the proposed strategy using several numerical examples on triangular grids.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 49 Mathematical sciences
- 46 Information and computing sciences
- 35 Commerce, management, tourism and services
- 15 Commerce, Management, Tourism and Services
- 08 Information and Computing Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 49 Mathematical sciences
- 46 Information and computing sciences
- 35 Commerce, management, tourism and services
- 15 Commerce, Management, Tourism and Services
- 08 Information and Computing Sciences
- 01 Mathematical Sciences