Necas Center Series
Interpolation Error Estimates for Three Dimensions
Publication
, Chapter
Dolejší, V; May, G
January 1, 2022
We extend the theoretical results to the three-dimensional case. In the same spirit as for the two-dimensional case, we recall the geometry of a tetrahedron K and define the interpolation error function and the corresponding error estimates. The extension is relatively straightforward but technically cumbersome. Therefore, we avoid some technical details that are intuitively understandable and can be derived by readers.
Duke Scholars
DOI
Publication Date
January 1, 2022
Volume
Part F1671
Start / End Page
77 / 88
Citation
APA
Chicago
ICMJE
MLA
NLM
Dolejší, V., & May, G. (2022). Interpolation Error Estimates for Three Dimensions. In Necas Center Series (Vol. Part F1671, pp. 77–88). https://doi.org/10.1007/978-3-031-04279-9_4
Dolejší, V., and G. May. “Interpolation Error Estimates for Three Dimensions.” In Necas Center Series, Part F1671:77–88, 2022. https://doi.org/10.1007/978-3-031-04279-9_4.
Dolejší V, May G. Interpolation Error Estimates for Three Dimensions. In: Necas Center Series. 2022. p. 77–88.
Dolejší, V., and G. May. “Interpolation Error Estimates for Three Dimensions.” Necas Center Series, vol. Part F1671, 2022, pp. 77–88. Scopus, doi:10.1007/978-3-031-04279-9_4.
Dolejší V, May G. Interpolation Error Estimates for Three Dimensions. Necas Center Series. 2022. p. 77–88.
DOI
Publication Date
January 1, 2022
Volume
Part F1671
Start / End Page
77 / 88