Skip to main content
Necas Center Series

Interpolation Error Estimates for Three Dimensions

Publication ,  Chapter
Dolejší, V; May, G
January 1, 2022

We extend the theoretical results to the three-dimensional case. In the same spirit as for the two-dimensional case, we recall the geometry of a tetrahedron K and define the interpolation error function and the corresponding error estimates. The extension is relatively straightforward but technically cumbersome. Therefore, we avoid some technical details that are intuitively understandable and can be derived by readers.

Duke Scholars

DOI

Publication Date

January 1, 2022

Volume

Part F1671

Start / End Page

77 / 88
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dolejší, V., & May, G. (2022). Interpolation Error Estimates for Three Dimensions. In Necas Center Series (Vol. Part F1671, pp. 77–88). https://doi.org/10.1007/978-3-031-04279-9_4
Dolejší, V., and G. May. “Interpolation Error Estimates for Three Dimensions.” In Necas Center Series, Part F1671:77–88, 2022. https://doi.org/10.1007/978-3-031-04279-9_4.
Dolejší V, May G. Interpolation Error Estimates for Three Dimensions. In: Necas Center Series. 2022. p. 77–88.
Dolejší, V., and G. May. “Interpolation Error Estimates for Three Dimensions.” Necas Center Series, vol. Part F1671, 2022, pp. 77–88. Scopus, doi:10.1007/978-3-031-04279-9_4.
Dolejší V, May G. Interpolation Error Estimates for Three Dimensions. Necas Center Series. 2022. p. 77–88.

DOI

Publication Date

January 1, 2022

Volume

Part F1671

Start / End Page

77 / 88