Skip to main content
Journal cover image

A hybrid multilevel method for high-order discretization of the Euler equations on unstructured meshes

Publication ,  Journal Article
May, G; Iacono, F; Jameson, A
Published in: Journal of Computational Physics
April 20, 2010

Higher order discretization has not been widely successful in industrial applications to compressible flow simulation. Among several reasons for this, one may identify the lack of tailor-suited, best-practice relaxation techniques that compare favorably to highly tuned lower order methods, such as finite-volume schemes. In this paper we investigate solution algorithms in conjunction with high-order Spectral Difference discretization for the Euler equations, using such techniques as multigrid and matrix-free implicit relaxation methods. In particular we present a novel hybrid multilevel relaxation method that combines (optionally matrix-free) implicit relaxation techniques with explicit multistage smoothing using geometric multigrid. Furthermore, we discuss efficient implementation of these concepts using such tools as automatic differentiation. © 2010 Elsevier Inc. All rights reserved.

Duke Scholars

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

April 20, 2010

Volume

229

Issue

10

Start / End Page

3938 / 3956

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
May, G., Iacono, F., & Jameson, A. (2010). A hybrid multilevel method for high-order discretization of the Euler equations on unstructured meshes. Journal of Computational Physics, 229(10), 3938–3956. https://doi.org/10.1016/j.jcp.2010.01.036
May, G., F. Iacono, and A. Jameson. “A hybrid multilevel method for high-order discretization of the Euler equations on unstructured meshes.” Journal of Computational Physics 229, no. 10 (April 20, 2010): 3938–56. https://doi.org/10.1016/j.jcp.2010.01.036.
May G, Iacono F, Jameson A. A hybrid multilevel method for high-order discretization of the Euler equations on unstructured meshes. Journal of Computational Physics. 2010 Apr 20;229(10):3938–56.
May, G., et al. “A hybrid multilevel method for high-order discretization of the Euler equations on unstructured meshes.” Journal of Computational Physics, vol. 229, no. 10, Apr. 2010, pp. 3938–56. Scopus, doi:10.1016/j.jcp.2010.01.036.
May G, Iacono F, Jameson A. A hybrid multilevel method for high-order discretization of the Euler equations on unstructured meshes. Journal of Computational Physics. 2010 Apr 20;229(10):3938–3956.
Journal cover image

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

April 20, 2010

Volume

229

Issue

10

Start / End Page

3938 / 3956

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences