Skip to main content
Journal cover image

Planar Turán number of the 7-cycle

Publication ,  Journal Article
Shi, R; Walsh, Z; Yu, X
Published in: European Journal of Combinatorics
May 1, 2025

The planar Turán number exP(n,H) of a graph H is the maximum number of edges in an n-vertex planar graph without H as a subgraph. Let C denote the cycle of length ℓ. The planar Turán number exP(n,C) is known when ℓ∈{3,4,5,6}, and is expected to behave differently when ℓ≥11. We prove that [Formula presented] for all n≥39, and show that equality holds for infinitely many integers n.

Duke Scholars

Published In

European Journal of Combinatorics

DOI

ISSN

0195-6698

Publication Date

May 1, 2025

Volume

126

Related Subject Headings

  • Computation Theory & Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Shi, R., Walsh, Z., & Yu, X. (2025). Planar Turán number of the 7-cycle. European Journal of Combinatorics, 126. https://doi.org/10.1016/j.ejc.2025.104134
Shi, R., Z. Walsh, and X. Yu. “Planar Turán number of the 7-cycle.” European Journal of Combinatorics 126 (May 1, 2025). https://doi.org/10.1016/j.ejc.2025.104134.
Shi R, Walsh Z, Yu X. Planar Turán number of the 7-cycle. European Journal of Combinatorics. 2025 May 1;126.
Shi, R., et al. “Planar Turán number of the 7-cycle.” European Journal of Combinatorics, vol. 126, May 2025. Scopus, doi:10.1016/j.ejc.2025.104134.
Shi R, Walsh Z, Yu X. Planar Turán number of the 7-cycle. European Journal of Combinatorics. 2025 May 1;126.
Journal cover image

Published In

European Journal of Combinatorics

DOI

ISSN

0195-6698

Publication Date

May 1, 2025

Volume

126

Related Subject Headings

  • Computation Theory & Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics